scholarly journals Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the $$\ell \ell bb$$ and $$\ell \ell WW$$ final states in pp collisions at $$\sqrt{s}=13$$ $$\text {TeV}$$ with the ATLAS detector

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

AbstractA search for a heavy neutral Higgs boson, A, decaying into a Z boson and another heavy Higgs boson, H, is performed using a data sample corresponding to an integrated luminosity of 139 fb$$^{-1}$$ - 1 from proton–proton collisions at $$\sqrt{s} = 13$$ s = 13  $$\text {TeV}$$ TeV recorded by the ATLAS detector at the LHC. The search considers the Z boson decaying into electrons or muons and the H boson into a pair of b-quarks or W bosons. The mass range considered is 230–800 $$\text {GeV}$$ GeV for the A boson and 130–700 $$\text {GeV}$$ GeV for the H boson. The data are in good agreement with the background predicted by the Standard Model, and therefore 95% confidence-level upper limits for $$\sigma \times B(A\rightarrow ZH)\times B(H\rightarrow bb \; \text {or} \; H \rightarrow WW)$$ σ × B ( A → Z H ) × B ( H → b b or H → W W ) are set. The upper limits are in the range 0.0062–0.380 pb for the $$H\rightarrow bb$$ H → b b channel and in the range 0.023–8.9 pb for the $$H\rightarrow WW$$ H → W W channel. An interpretation of the results in the context of two-Higgs-doublet models is also given.

2021 ◽  
Vol 81 (4) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

AbstractA search for heavy resonances decaying into a pair of Z bosons leading to $$\ell ^+\ell ^-\ell '^+\ell '^-$$ ℓ + ℓ - ℓ ′ + ℓ ′ - and $$\ell ^+\ell ^-\nu {{\bar{\nu }}}$$ ℓ + ℓ - ν ν ¯ final states, where $$\ell $$ ℓ stands for either an electron or a muon, is presented. The search uses proton–proton collision data at a centre-of-mass energy of 13 TeV collected from 2015 to 2018 that corresponds to the integrated luminosity of 139 $$\mathrm {fb}^{-1}$$ fb - 1 recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. Different mass ranges spanning 200 GeV to 2000 GeV for the hypothetical resonances are considered, depending on the final state and model. In the absence of a significant observed excess, the results are interpreted as upper limits on the production cross section of a spin-0 or spin-2 resonance. The upper limits for the spin-0 resonance are translated to exclusion contours in the context of Type-I and Type-II two-Higgs-doublet models, and the limits for the spin-2 resonance are used to constrain the Randall–Sundrum model with an extra dimension giving rise to spin-2 graviton excitations.


Sign in / Sign up

Export Citation Format

Share Document