scholarly journals Orbital angular momentum uncertainty relations of entangled two-photon states

2021 ◽  
Vol 75 (8) ◽  
Author(s):  
Wei Li ◽  
Shengmei Zhao

Abstract The inseparability of quantum correlation requires that the particles in the composite system be treated as a whole rather than treated separately, a typical example is the Einstein–Podolsky–Rosen (EPR) paradox. In this paper, we provide a theoretical study on the uncertainty relations of two kinds of bipartite observables in two-photon orbital angular momentum (OAM) entanglement, that is, the relative distance and centroid of the two photons at azimuth. We find that the uncertainty relations of the bipartite observables holds in any two-photon state, and they are separable in two-photon OAM entanglement. In addition, the entangled state behaves as a single particle in the bipartite representation. Finally, we find that the uncertainty relations of the bipartite observables can be used to manipulate the degree of the entanglement of an EPR state. Graphic abstract

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Lixiang Chen

AbstractWe formulate a density matrix to fully describe two-photon state within a thermal light source in the photon orbital angular momentum (OAM) Hilbert space. We prove the separability, i.e., zero entanglement of the thermal two-photon state. Still, we reveal the hidden quantum correlations in terms of geometric measures of discord. By mimicking the original protocol of quantum teleportation, we demonstrate that the non-zero quantum discord can be utilized to transmit a high-dimensional OAM state at the single-photon level. It is found that albeit the low fidelity of teleportation due to the inherent component of maximally mixed state, the information of all parameters that characterize the original state can still be extracted from the teleported one. Besides, we demonstrate that the multiple repetitions of the protocol, enable the transmission of a complex-amplitude light field, e.g., an optical image, regardless of being accompanied with a featureless background. We also distinguish our scheme of optical image transmission from that of ghost imaging.


2006 ◽  
Vol 76 (5) ◽  
pp. 753-759 ◽  
Author(s):  
X. F Ren ◽  
G. P Guo ◽  
Y. F Huang ◽  
C. F Li ◽  
G. C Guo

Proceedings ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Adriana Pecoraro ◽  
Filippo Cardano ◽  
Lorenzo Marrucci ◽  
Alberto Porzio

Orbital angular momentum is a discrete degree of freedom that can access an infinite dimensional Hilbert space, thus enhancing the information capacity of a single optical beam. Continuous variables field quadratures allow achieving some quantum tasks in a more advantageous way with respect to the use of photon-number states. Here, we use a hybrid approach realizing bipartite continuous-variable Gaussian entangled state made up of two electromagnetic modes carrying orbital angular momentum. A q-plate is used for endowing a pair of entangled beams with such a degree of freedom. This quantum state is then completely characterized thanks to a novel design of a homodyne detector in which also the local oscillator is an orbital angular momentum-carrying beams so allowing the direct detection of vortex modes quadratures.


Author(s):  
Alberto Rimini

This extended note deals with a pedagogical description of the entangled state of two particles, starting from first principles. After some general remarks about quantum mechanics and physical theories, the single particle case is discussed by defining state, uncertainty relations and wave function in the state space. The system of two particles is then considered, with its possible states, starting from the original papers by Einstein Podolsky Rosen and by Schroedinger. The quantum measurement problem is then introduced, together with its role in the entanglement state. Finally the orthodox solution and the relevant conclusions are drawn.


2002 ◽  
Vol 65 (3) ◽  
Author(s):  
Sonja Franke-Arnold ◽  
Stephen M. Barnett ◽  
Miles J. Padgett ◽  
L. Allen

2007 ◽  
Vol 75 (1) ◽  
Author(s):  
G. F. Calvo ◽  
A. Picón ◽  
A. Bramon

2021 ◽  
Vol 104 (5) ◽  
Author(s):  
D. A. Turaykhanov ◽  
D. O. Akat'ev ◽  
A. V. Vasiliev ◽  
F. M. Ablayev ◽  
A. A. Kalachev

Universe ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 56 ◽  
Author(s):  
Matthew J. Lake ◽  
Marek Miller ◽  
Shi-Dong Liang

We derive generalised uncertainty relations (GURs) for orbital angular momentum and spin in the recently proposed smeared-space model of quantum geometry. The model implements a minimum length and a minimum linear momentum and recovers both the generalised uncertainty principle (GUP) and extended uncertainty principle (EUP), previously proposed in the quantum gravity literature, within a single formalism. In this paper, we investigate the consequences of these results for particles with extrinsic and intrinsic angular momentum and obtain generalisations of the canonical so ( 3 ) and su ( 2 ) algebras. We find that, although SO ( 3 ) symmetry is preserved on three-dimensional slices of an enlarged phase space, corresponding to a superposition of background geometries, individual subcomponents of the generalised generators obey nontrivial subalgebras. These give rise to GURs for orbital angular momentum while leaving the canonical commutation relations intact except for a simple rescaling, ħ → ħ + β . The value of the new parameter, β ≃ ħ × 10 − 61 , is determined by the ratio of the dark energy density to the Planck density, and its existence is required by the presence of both minimum length and momentum uncertainties. Here, we assume the former to be of the order of the Planck length and the latter to be of the order of the de Sitter momentum ∼ ħ Λ , where Λ is the cosmological constant, which is consistent with the existence of a finite cosmological horizon. In the smeared-space model, ħ and β are interpreted as the quantisation scales for matter and geometry, respectively, and a quantum state vector is associated with the spatial background. We show that this also gives rise to a rescaled Lie algebra for generalised spin operators, together with associated subalgebras that are analogous to those for orbital angular momentum. Remarkably, consistency of the algebraic structure requires the quantum state associated with a flat background to be fermionic, with spin eigenvalues ± β / 2 . Finally, the modified spin algebra leads to GURs for spin measurements. The potential implications of these results for cosmology and high-energy physics, and for the description of spin and angular momentum in relativistic theories of quantum gravity, including dark energy, are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document