scholarly journals Similarity dark energy models in Bianchi type-I space-time

2016 ◽  
Vol 131 (11) ◽  
Author(s):  
Ahmad T. Ali ◽  
Anil Kumar Yadav ◽  
Abdulah K. Alzahrani
Author(s):  
Anirudh Pradhan ◽  
Vinod Kumar Bhardwaj ◽  
Archana Dixit ◽  
Syamala Krishnannair

In this paper, we examine the LRS Bianchi-type-I cosmological model with holographic dark energy. The exact solutions to the corresponding field equations are obtained by using the generalized hybrid expansion law (HEL). The EoS parameter [Formula: see text] for DE is found to be time-dependent and redshift-dependent and its exiting range for derived model is agreeing well with the current observations. Here, we likewise apply two mathematical diagnostics, the statefinders ([Formula: see text]) and [Formula: see text] plan to segregate HDE model from the [Formula: see text]CDM model. Here, the [Formula: see text] diagnostic trajectories are good tools to classify the dynamical DE model. We found that our model lies in both thawing region and freezing region. We also construct the potential as well as dynamics of the quintessence and tachyon scalar field. Some physical and geometric properties of this model along with the physical acceptability of cosmological solution have been discussed in detail.


Author(s):  
H. Hossienkhani ◽  
N. Azimi ◽  
H. Yousefi

The impact of anisotropy on the Ricci dark energy cosmologies is investigated where it is assumed that the geometry of the universe is described by Bianchi type I (BI) metric. The main goal is to determine the astrophysical constraints on the model by using the current available data as type Ia supernovae (SNIa), the Baryon Acoustic Oscillation (BAO), and the Hubble parameter [Formula: see text] data. In this regard, a maximum likelihood method is applied to constrain the cosmological parameters. Combining the data, it is found out that the allowed range for the density parameter of the model stands in [Formula: see text]. With the help of the Supernova Legacy Survey (SNLS) sample, we estimate the possible dipole anisotropy of the Ricci dark energy model. Then, by using a standard [Formula: see text] minimization method, it is realized that the transition epoch from early decelerated to current accelerated expansion occurs faster in Ricci dark energy model than [Formula: see text]CDM model. The results indicate that the BI model for the Ricci dark energy is consistent with the observational data.


Sign in / Sign up

Export Citation Format

Share Document