Effect of Newtonian heating on two-phase fluctuating flow of dusty fluid: Poincaré–Lighthill perturbation technique

2021 ◽  
Vol 136 (11) ◽  
Author(s):  
Ilyas Khan ◽  
Dolat Khan ◽  
Gohar Ali ◽  
Arshad Khan
Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1587
Author(s):  
Dolat Khan ◽  
Ata ur Rahman ◽  
Gohar Ali ◽  
Poom Kumam ◽  
Attapol Kaewkhao ◽  
...  

Due to the importance of wall shear stress effect and dust fluid in daily life fluid problems. This paper aims to discover the influence of wall shear stress on dust fluids of fluctuating flow. The flow is considered between two parallel plates that are non-conducting. Due to the transformation of heat, the fluid flow is generated. We consider every dust particle having spherical uniformly disperse in the base fluid. The perturb solution is obtained by applying the Poincare-Lighthill perturbation technique (PLPT). The fluid velocity and shear stress are discussed for the different parameters like Grashof number, magnetic parameter, radiation parameter, and dusty fluid parameter. Graphical results for fluid and dust particles are plotted through Mathcad-15. The behavior of base fluid and dusty fluid is matching for different embedded parameters.


1999 ◽  
Vol 121 (1) ◽  
pp. 185-190 ◽  
Author(s):  
Claudia O. Iyer ◽  
Wen-Jei Yang

An analytical study is performed on the dynamics and hydrodynamic stability of liquid-vapor mixtures in the bubbly-flow range in reciprocating motion through a horizontal channel. The perturbation technique is applied on the one-dimensional conservation equations for laminar flow and on the thermodynamic equation of state. The Laplace transform is operated on the linearized equations from which a transfer function is derived, relating the flow rate change due to a change in pressure drop along the channel. The resulting characteristic equation is analyzed to determine the dynamic behavior of the two-phase flow in reciprocating motion and the conditions for neutral stability under which self-induced oscillations occur. The natural frequency of the physical system is derived, which can be used to predict the resonance that will occur in forced vibrations. Results can be applied to systems such as car suspensions (shock absorbers) in which oil is susceptible to cavitation, resulting in bubbly flow due to vibrations. Conditions under which resonance occurs in the two-phase system are determined. Resonance leads to severe oscillations and noise generation, as experienced in shock absorbers in car suspensions.


2016 ◽  
Vol 53 (5) ◽  
pp. 1517-1525 ◽  
Author(s):  
Sadia Siddiqa ◽  
Naheed Begum ◽  
Md. Anwar Hossain ◽  
Naeem Mustafa ◽  
Rama Subba Reddy Gorla

2021 ◽  
Author(s):  
Dolat khan ◽  
Ata ur Rahman ◽  
Gohar ali ◽  
Poom kummam

Abstract On the importance of wall shear stress effect and dust fluid in the fluid problems. The aim of this paper to discover the influence of wall shear stress on dust fluids of fluctuating flow. The flow is consider between two parallel plates which are non-conducting. Due to the transformation of heat the fluid flow is generated. We consider every dust particle having spherical uniformly disperse in the base fluid. The perturb solution is obtained by applying Poincare-Lighthill perturbation technique (PLPT). The fluid velocity along with shear stress is discussed for the different parameters like Grashof number, magnetic parameter, radiation parameter and dusty fluid parameter. Graphical results for fluid and dust particles are plotted through Mathcad-15. The behavior of base fluid and dusty fluid is matching for different embedded parameters.


Author(s):  
J. Hasnain ◽  
Z. Abbas ◽  
M. Sajid

AbstractThis article presents a theoretical study of magnetohydrodynamic boundary layer flow of a dusty viscoelastic fluid over a porous stretching sheet. The basic steady equations of the viscoelastic second grade fluid and dust phases are in the form of partial differential equations. A set of coupled nonlinear ordinary differential equations is obtained by using suitable similarity transformations. The approximate first order solutions of the resulting equations are obtained using the perturbation technique. The results are also verified with the well-known finite difference technique known as Keller box method. The physical insight of the involved parameters on the velocity of both fluid and dust phases and the skin-friction coefficient is shown through graphs and tables and discussed in detail. The study shows that an increased effective viscosity increases the velocity of both fluid and particle phase.


Author(s):  
Sadia Siddiqa ◽  
M. N. Abrar ◽  
M. A. Hossain ◽  
M. Awais

AbstractThis article provides the computational results of laminar, boundary layer flow of a dilute gas-particle mixture over a semi-infinite vertical wavy surface. The governing parabolic partial differential equations are switched into another frame of reference by using primitive variable formulations (PVF). Two-point finite difference scheme is applied to acquire the unknown quantities of the carrier and the particle phase. The results are obtained for the cases: (i) water–metal mixture and (ii) air–metal mixture and are displayed in the form of wall shear stress, wall heat transfer, velocity profile, temperature profile, streamlines and isotherms for different emerging physical parameters. The solutions are compared, as well, with the available data in the literature. Quantitative comparison shows good compatibility between the present and the previous results. For the dusty fluid model it is found that the rate of heat transfer reduces considerably when the amplitude of the sinusoidal waveform increases from 0 to 0.5.


2004 ◽  
Vol 2004 (72) ◽  
pp. 3975-3988 ◽  
Author(s):  
V. Venkataraman ◽  
K. Kannan

The flow past an infinite vertical isothermal plate started impulsively in its own plane in a viscous incompressible two-phase fluid has been considered by taking into account the viscous dissipative heat. The coupled nonlinear equations governing the flow are solved for fluid and particle phases by finite difference method. The velocity and temperature fields have been shown graphically forGbeing positive for dusty air and it was observed that the same results hold for water. (Gdenotes the Grashof number andG>0corresponds to cooling of the plate by free convection currents.) The results forG<0(heating of the plate) have been verified and discussed. The numerical values of skin friction and the rate of heat transfer of dusty fluid are shown in tables. The effects ofGandE(the Eckert number) on the flow field are discussed. It is observed that dusty fluid causes an increase in skin friction. The increase in mass concentration of dust particles decreases the heat transfer rate. The presence of inert particles does not admit the reverse type of flow even for large values oft.


Author(s):  
Sadia Siddiqa ◽  
M. Anwar Hossain ◽  
Suvash C Saha

Purpose – The purpose of this paper is to conduct a detailed investigation of the two-dimensional natural convection flow of a dusty fluid. Therefore, the incompressible boundary layer flow of a two-phase particulate suspension is investigated numerically over a semi-infinite vertical flat plate. Comprehensive flow formations of the gas and particle phases are given in the boundary layer region. Primitive variable formulation is employed to convert the nondimensional governing equations into the non-conserved form. Three important two-phase mechanisms are discussed, namely, water-metal mixture, oil-metal mixture and air-metal mixture. Design/methodology/approach – The full coupled nonlinear system of equations is solved using implicit two point finite difference method along the whole length of the plate. Findings – The authors have presented numerical solution of the dusty boundary layer problem. Solutions obtained are depicted through the characteristic quantities, such as, wall shear stress coefficient, wall heat transfer coefficient, velocity distribution and temperature distribution for both phases. Results are interpreted for wide range of Prandtl number Pr (0.005-1,000.0). It is observed that thin boundary layer structures can be formed when mass concentration parameter or Prandtl number (e.g. oil-metal particle mixture) are high. Originality/value – The results of the study may be of some interest to the researchers of the field of chemical engineers.


Sign in / Sign up

Export Citation Format

Share Document