scholarly journals A new and gauge-invariant littlest Higgs model with T-parity

2021 ◽  
Vol 137 (1) ◽  
Author(s):  
José Ignacio Illana ◽  
José María Pérez-Poyatos

AbstractWe inspect the Littlest Higgs model with T-parity, based on a global symmetry SU(5) spontaneously broken to SO(5), in order to elucidate the pathologies it presents due to the non-trivial interplay between the gauge invariance associated to the heavy modes and the discrete T-parity symmetry. In particular, the usual Yukawa Lagrangian responsible for providing masses to the heavy ‘mirror’ fermions is not gauge invariant. This is because it contains an SO(5) quintuplet of right-handed fermions that transforms nonlinearly under SU(5), hence involving in general all SO(5) generators when a gauge transformation is performed and not only those associated to its gauge subgroup. Part of the solution to this problem consists of completing the right-handed fermion quintuplet with T-odd ‘mirror partners’ and a gauge singlet, what has been previously suggested for other purposes. Furthermore, we find that the singlet must be T-even, the global symmetry group must be enlarged, an additional nonlinear sigma field should be introduced to parametrize the spontaneous symmetry breaking and new extra fermionic degrees of freedom are required to give a mass to all fermions in an economic way while preserving gauge invariance. Finally, we derive the Coleman–Weinberg potential for the Goldstone fields using the background field method.

2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Chang Hu ◽  
Xiao-Di Li ◽  
Yi Li

AbstractThe on-shell recursion relation has been recognized as a powerful tool for calculating tree-level amplitudes in quantum field theory, but it does not work well when the residue of the deformed amplitude $$\hat{A}(z)$$ A ^ ( z ) does not vanish at infinity of z. However, in such a situation, we still can get the right amplitude by computing the boundary contribution explicitly. In Arkani-Hamed and Kaplan (JHEP 04:076. 10.1088/1126-6708/2008/04/076. arXiv:0801.2385, 2008), the background field method was first used to analyze the boundary behaviors of amplitudes with two deformed external lines in different theories. The same method has been generalized to calculate the explicit boundary operators of some amplitudes with BCFW-like deformation in Jin and Feng (JHEP 04:123. 10.1007/JHEP04(2016)123. arXiv:1507.00463, 2016). In this paper, we will take a step further to generalize the method to the case of multiple-line deformation, and to show how the boundary behaviors (even the boundary contributions) can be extracted in the method.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
A. Cherchiglia ◽  
D. C. Arias-Perdomo ◽  
A. R. Vieira ◽  
M. Sampaio ◽  
B. Hiller

AbstractWe compute the two-loop $$\beta $$ β -function of scalar and spinorial quantum electrodynamics as well as pure Yang–Mills and quantum chromodynamics using the background field method in a fully quadridimensional setup using implicit regularization (IREG). Moreover, a thorough comparison with dimensional approaches such as conventional dimensional regularization (CDR) and dimensional reduction (DRED) is presented. Subtleties related to Lorentz algebra contractions/symmetric integrations inside divergent integrals as well as renormalisation schemes are carefully discussed within IREG where the renormalisation constants are fully defined as basic divergent integrals to arbitrary loop order. Moreover, we confirm the hypothesis that momentum routing invariance in the loops of Feynman diagrams implemented via setting well-defined surface terms to zero deliver non-abelian gauge invariant amplitudes within IREG just as it has been proven for abelian theories.


1993 ◽  
Vol 71 (5-6) ◽  
pp. 237-240 ◽  
Author(s):  
M. A. van Eijck

We present a one-loop calculation of a gauge invariant quantum-chromodynamic β function at finite temperature with rules coming from the background field method in the Landau gauge and from the retarded and advanced formulation of finite-temperature field theory.


2012 ◽  
Vol 27 (13) ◽  
pp. 1250075 ◽  
Author(s):  
MIR FAIZAL

In this paper, we will study perturbative quantum gravity on supermanifolds with both noncommutativity and non-anticommutativity of spacetime coordinates. We shall first analyze the BRST and the anti-BRST symmetries of this theory. Then we will also analyze the effect of shifting all the fields of this theory in background field method. We will construct a Lagrangian density which apart from being invariant under the extended BRST transformations is also invariant under on-shell extended anti-BRST transformations. This will be done by using the Batalin–Vilkovisky (BV) formalism. Finally, we will show that the sum of the gauge-fixing term and the ghost term for this theory can be elegantly written down in superspace with a two Grassmann parameter.


2002 ◽  
Vol 17 (25) ◽  
pp. 3681-3688 ◽  
Author(s):  
LISA FREYHULT

We compute the effective potential of SU(2) Yang–Mills theory using the background field method and the Faddeev–Niemi decomposition of the gauge fields. In particular, we find that the potential will depend on the values of two scalar fields in the decomposition and that its structure will give rise to a symmetry breaking.


Sign in / Sign up

Export Citation Format

Share Document