Part Three: The Nuclear Atom

2013 ◽  
pp. 225-328
Keyword(s):  
Author(s):  
Henry Semat ◽  
John R. Albright
Keyword(s):  

Author(s):  
J. L. Heilbron

‘Productive ambiguity’ begins with Bohr’s move to Cambridge in 1911 to work with J. J. Thompson on the electron theory and to publish an English translation of his thesis. He did not flourish in Cambridge, however, and moved to Manchester in early 1912 to study under Ernest Rutherford. He soon took an interest in the work of another researcher in the laboratory, Charles Galton Darwin, who was wrestling with the problem of how electrons in a nuclear atom interact with passing alpha particles. Consideration of Darwin’s problem prompted Bohr to discover the radical mechanical instability of the nuclear atom, a result for which his thesis and his philosophy had prepared him. He exploited the instability to develop his quantum atom. His several attempts to ground his invention in existing physics give a precious insight into his mind at work, into his way of entertaining several contradictory formulations of his thought at the same time.


Author(s):  
Frank Close

‘The fly in the cathedral’ charts the discovery of the nuclear atom and the start of modern atomic and nuclear physics. It began in 1895 with the discovery of X-rays by Wilhelm Roentgen and radioactivity by Henri Becquerel. In 1897, J.J. Thomson discovered the electron and realised they were common to all atoms, which implied that atoms have an internal structure. Negatively-charged electrons are bound to positively-charged entities within the atom, but what carries this positive charge and how is it distributed? It was Ernest Rutherford, in 1911, who announced his solution: all of an atom’s positive charge and most of its mass are contained in a compact nucleus at the centre.


Sir Ernest Rutherford: It was on March 19, 1914, that the Royal Society held its last discussion on the constitution of the atom—just fifteen years ago. I had the honour to open the discussion on that occasion, and the other speakers were Mr. Moseley, Profs. Soddy, Nicholson, Hicks, Stanley Allen, S. P. Thomp­son. In my opening remarks I put forward the theory of the nuclear atom and the evidence in support of it, while Mr. Moseley gave an account of his X-ray investigations, which defined the atomic numbers of the elements, and showed how many gaps were present between hydrogen number 1 and uranium number 92. Prof. Soddy drew attention to the existence of isotopes in the radioactive series, and also to a remarkable observation by Sir Joseph Thomson and Dr. Aston, who had obtained two parabolas in the positive ray spectrograph of neon, and he suggested that possibly the ordinary elements might also consist of mixture of isotopes. I think you will find that the remarks and suggestions made in this discussion fifteen years ago have a certain pertinence to-day. In particular Hicks and Stanley Allen drew attention to the importance of taking into account the magnetic fields in the nucleus, although at that time we had very little evidence on that point, and even to-day our information is very scanty. What has been accomplished in the intervening period ? On looking back we see that three new methods of attack on this problem have been developed. The first, and in some respects the most important, has been the proof of the isotopic constitution of the ordinary elements, and the accurate determination of the masses or weights of the individual isotopes, mainly due to the work of Dr. Aston. This has led in a sense to an extension of the original ideas of Moseley. The experiments of the latter fixed the number of possible nuclear charges, while Aston has shown that there are a large number of species of atoms each defined by its nuclear charge, although their masses and their nuclear constitution may be different. The essential point brought out in the earlier work of Dr. Aston was that the masses of the elements are approxi­mately expressed by whole numbers, where oxygen is taken as 16—with the exception of hydrogen itself. But the real interest, as we now see it, is not the whole number rule itself, but rather the departures from it.


1956 ◽  
Vol 195 (5) ◽  
pp. 93-107 ◽  
Author(s):  
E. N. da C. Andrade
Keyword(s):  

Author(s):  
David Fisher

It is often taken as a matter of established fact that the difference between a good scientist and a great scientist is the ability to distinguish in advance which problems are going to be the important ones. I think this belief is a reflection of the fact that history is written by the winners: Professor X chooses a problem and with much hard work solves it, but it turns out not to have important consequences, so it and he are forgotten; Professor Y does the same, but this time the result spurs further work or even opens new and unforeseeable regions of science, so he naturally feels that his “intuition” was correct. But how do you distinguish his intuition from a lucky guess? I suggest that a study of the history of science tells us that luck plays a significant part. Consider, for example, Lord Rutherford’s discovery of the nuclear atom—perhaps the most important experimental discovery of the twentieth century, in that it led to quantum theory and the whole of nuclear physics. To set the stage: By the first few years of the twentieth century it had been determined that there were three kinds of radioactive emissions, termed alpha, beta, and gamma rays. The gamma rays were electromagnetic in nature, the beta rays were electrons, and Rutherford had just shown that the alpha rays were in fact helium; or rather, as he put it, the alpha rays were a stream of particles zipping along at roughly 10,000 miles per second which, after they slowed down and lost their electric charge, became helium atoms. (He didn’t realize at the time that they “lost” their positive electric charge by picking up negatively charged electrons.) What next? Well, the natural thing to do was to see how these radioactive emissions interacted with matter. This had already been done with the beta and gamma radiations: a stream of these radiations had been directed at various targets, and such parameters as their depth of penetration and ionizing capabilities had been measured, with no particular insights gained (an example of Professor X’s work).


1999 ◽  
pp. 233-260
Author(s):  
Alan A. Grometstein
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document