Diffusion and Convection

2021 ◽  
pp. 99-151
1998 ◽  
Author(s):  
P. Chen ◽  
G. de Vahl Davis ◽  
J. Kaenton ◽  
E. Leonardi ◽  
S. Leong ◽  
...  

2011 ◽  
Vol 43 (6) ◽  
pp. 065505 ◽  
Author(s):  
Hideyuki O-tani ◽  
Takeshi Akinaga ◽  
Masako Sugihara-Seki

1983 ◽  
Vol 244 (1) ◽  
pp. H109-H114 ◽  
Author(s):  
G. A. Adams ◽  
I. A. Feuerstein

We examine the estimation of local concentrations of materials that are released from the dense and alpha-granules of platelets during accumulation of platelets upon collagen-coated glass. Platelet/red blood cell suspensions were perfused through a 1.3-mm-ID tube. Empirical data were used in a calculation procedure, based on diffusion and convection, designed to yield an upper bound on the interfacial fluid concentration (IFC) for each substance considered. The necessary empirical data are the rate of platelet accumulation and the maximum amount of material in the platelet capable of secretion. It was found that the IFC is dependent on the shear rate at the surface (G) and is proportional to G0.27. This means that an eightfold increase in flow rate would increase the IFCs approximately twofold. Serotonin, pyrophosphate, adenosine 5'-monophosphate (AMP), and adenosine 5'-triphosphate (ATP) were found not to be present in sufficient quantities to produce IFCs that could influence platelet aggregation if used alone at the IFC. A second set of materials, fibrinogen, fibronectin von Willebrand factor, and calcium, had IFCs less than their concentrations normally found in plasma. A third category, containing adenosine 5'-diphosphate (ADP) alone, had an IFC close to those known to affect platelet aggregation. The role of metabolites of arachidonic acid, which may promote or inhibit platelet aggregation, awaits further description.


1988 ◽  
Vol 127 ◽  
Author(s):  
P. J. Bourke ◽  
D. Gilling ◽  
N. L. Jefferies ◽  
D. A. Lever ◽  
T. R. Lineham

ABSTRACTAqueous phase mass transfer through the rocks surrounding a radioactive waste repository will take place by diffusion and convection. This paper presents a comprehensive set of measurements of the mass transfer characteristics for a single, naturally occurring, clay. These data have been compared with the results predicted by mathematical models of mass transport in porous media, in order to build confidence in these models.


1992 ◽  
Vol 114 (1) ◽  
pp. 30-33 ◽  
Author(s):  
A. S. Burns ◽  
L. A. Stickler ◽  
W. E. Stewart

The situation of one-dimensional, transient inward solidification of a binary solution in a circular cylinder is studied numerically. The solution is assumed to be of a hypoeutectic initial concentration and to be initially at a superheated temperature above its initial melting point temperature. The boundary temperature of the cylinder is below that of its heterogeneous nucleation temperature and no supercooling occurs. The boundary temperatures and final solution concentrations are assumed to be above and below, respectively, the eutectic point of the solution. The finite difference numerical model predicts the time for the radial formation of the mush type of ice to reach the center of the cylinder and the time for the entire cylinder to reach the cylinder boundary temperature, based upon the assumptions of negligible diffusion and convection of solute during solidification. The results reveal that closure times are significantly increased for the solutions compared to pure water due to decreased conductivity of the mush compared to ice.


1994 ◽  
Vol 356 ◽  
Author(s):  
S. Y. Tam ◽  
L. E. Scriven ◽  
H. K. Stolarski

AbstractA model is developed to predict the magnitude and pattern of stress due to drying of polymer films. This model combines diffusion-and-convection equation with large deformation elasto-viscoplasticity, utilizing concentration dependent elastic and viscoplastic material properties to better represent the behavior of drying thin films.The results show that the highest stress occurs at film surface where the concentration depletion is the highest. The magnitude of this stress is induced by increasing mass transfer across the film surface but reduced by increasing diffusion coefficient. The edge effect is significant but local, limited to about four film thicknesses. Similarly, change in substrate induces extra stress.


Sign in / Sign up

Export Citation Format

Share Document