Quantum Channel Identification Problem

Author(s):  
Akio Fujiwara
2004 ◽  
Vol 14 (06) ◽  
pp. 1975-1985
Author(s):  
RASTKO ŽIVANOVIĆ

The task of locating an arcing-fault on overhead line using sampled measurements obtained at a single line terminal could be classified as a practical nonlinear system identification problem. The practical reasons impose the requirement that the solution should be with maximum possible precision. Dynamic behavior of an arc in open air is influenced by the environmental conditions that are changing randomly, and therefore the useful practically application of parametric modeling is out of question. The requirement to identify only one parameter is yet another specific of this problem. The parameter we need is the one that linearly correlates the voltage samples with the current derivative samples (inductance). The correlation between the voltage samples and the current samples depends on the unpredictable arc dynamic behavior. Therefore this correlation is reconstructed using nonparametric regression. A partially linear model combines both, parametric and nonparametric parts in one model. The fit of this model is noniterative, and provides an efficient way to identify (pull out) a single linear correlation from the nonlinear time series.


Author(s):  
Daniel E. Jones ◽  
Gabriele Riccardi ◽  
Cristian Antonelli ◽  
Michael Brodsky
Keyword(s):  

2021 ◽  
pp. 107754632110034
Author(s):  
Ololade O Obadina ◽  
Mohamed A Thaha ◽  
Kaspar Althoefer ◽  
Mohammad H Shaheed

This article presents a novel hybrid algorithm based on the grey-wolf optimizer and whale optimization algorithm, referred here as grey-wolf optimizer–whale optimization algorithm, for the dynamic parametric modelling of a four degree-of-freedom master–slave robot manipulator system. The first part of this work consists of testing the feasibility of the grey-wolf optimizer–whale optimization algorithm by comparing its performance with a grey-wolf optimizer, whale optimization algorithm and particle swarm optimization using 10 benchmark functions. The grey-wolf optimizer–whale optimization algorithm is then used for the model identification of an experimental master–slave robot manipulator system using the autoregressive moving average with exogenous inputs model structure. Obtained results demonstrate that the hybrid algorithm is effective and can be a suitable substitute to solve the parameter identification problem of robot models.


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 34-47
Author(s):  
Borja Espejo-Garcia ◽  
Ioannis Malounas ◽  
Eleanna Vali ◽  
Spyros Fountas

In the past years, several machine-learning-based techniques have arisen for providing effective crop protection. For instance, deep neural networks have been used to identify different types of weeds under different real-world conditions. However, these techniques usually require extensive involvement of experts working iteratively in the development of the most suitable machine learning system. To support this task and save resources, a new technique called Automated Machine Learning has started being studied. In this work, a complete open-source Automated Machine Learning system was evaluated with two different datasets, (i) The Early Crop Weeds dataset and (ii) the Plant Seedlings dataset, covering the weeds identification problem. Different configurations, such as the use of plant segmentation, the use of classifier ensembles instead of Softmax and training with noisy data, have been compared. The results showed promising performances of 93.8% and 90.74% F1 score depending on the dataset used. These performances were aligned with other related works in AutoML, but they are far from machine-learning-based systems manually fine-tuned by human experts. From these results, it can be concluded that finding a balance between manual expert work and Automated Machine Learning will be an interesting path to work in order to increase the efficiency in plant protection.


Sign in / Sign up

Export Citation Format

Share Document