SHORT RANGE WAVE FORECASTS USING ENSEMBLE WAVE PREDICTION SYSTEM

Author(s):  
NOBUHITO MORI ◽  
HIROMARU HIRAKUCHI
Author(s):  
Yusuke IGARASHI ◽  
Akira IMAI ◽  
Atsushi ITO ◽  
Hiroyuki KAITSU

2019 ◽  
Vol 146 (726) ◽  
pp. 401-414 ◽  
Author(s):  
Robert R. King ◽  
Daniel J. Lea ◽  
Matthew J. Martin ◽  
Isabelle Mirouze ◽  
Julian Heming

2009 ◽  
Vol 135 (640) ◽  
pp. 767-776 ◽  
Author(s):  
Neill E. Bowler ◽  
Alberto Arribas ◽  
Sarah E. Beare ◽  
Kenneth R. Mylne ◽  
Glenn J. Shutts

2009 ◽  
Vol 32 (2) ◽  
pp. 133-150 ◽  
Author(s):  
Sangwook Park ◽  
Da-Un Lee ◽  
Jang-Won Seo

2005 ◽  
Vol 133 (7) ◽  
pp. 1825-1839 ◽  
Author(s):  
A. Arribas ◽  
K. B. Robertson ◽  
K. R. Mylne

Abstract Current operational ensemble prediction systems (EPSs) are designed specifically for medium-range forecasting, but there is also considerable interest in predictability in the short range, particularly for potential severe-weather developments. A possible option is to use a poor man’s ensemble prediction system (PEPS) comprising output from different numerical weather prediction (NWP) centers. By making use of a range of different models and independent analyses, a PEPS provides essentially a random sampling of both the initial condition and model evolution errors. In this paper the authors investigate the ability of a PEPS using up to 14 models from nine operational NWP centers. The ensemble forecasts are verified for a 101-day period and five variables: mean sea level pressure, 500-hPa geopotential height, temperature at 850 hPa, 2-m temperature, and 10-m wind speed. Results are compared with the operational ECMWF EPS, using the ECMWF analysis as the verifying “truth.” It is shown that, despite its smaller size, PEPS is an efficient way of producing ensemble forecasts and can provide competitive performance in the short range. The best relative performance is found to come from hybrid configurations combining output from a small subset of the ECMWF EPS with other different NWP models.


Oceanography ◽  
2014 ◽  
Vol 27 (3) ◽  
pp. 92-103 ◽  
Author(s):  
Richard Allard ◽  
Erick Rogers ◽  
Paul Martin ◽  
Tommy Jensen ◽  
Philip Chu ◽  
...  

2008 ◽  
Vol 9 (6) ◽  
pp. 1301-1317 ◽  
Author(s):  
Guillaume Thirel ◽  
Fabienne Rousset-Regimbeau ◽  
Eric Martin ◽  
Florence Habets

Abstract Ensemble streamflow prediction systems are emerging in the international scientific community in order to better assess hydrologic threats. Two ensemble streamflow prediction systems (ESPSs) were set up at Météo-France using ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System for the first one, and from the Prévision d’Ensemble Action de Recherche Petite Echelle Grande Echelle (PEARP) ensemble prediction system of Météo-France for the second. This paper presents the evaluation of their capacities to better anticipate severe hydrological events and more generally to estimate the quality of both ESPSs on their globality. The two ensemble predictions were used as input for the same hydrometeorological model. The skills of both ensemble streamflow prediction systems were evaluated over all of France for the precipitation input and streamflow prediction during a 569-day period and for a 2-day short-range scale. The ensemble streamflow prediction system based on the PEARP data was the best for floods and small basins, and the ensemble streamflow prediction system based on the ECMWF data seemed the best adapted for low flows and large basins.


Sign in / Sign up

Export Citation Format

Share Document