The impact of Argo observations in a global weakly coupled ocean–atmosphere data assimilation and short‐range prediction system

2019 ◽  
Vol 146 (726) ◽  
pp. 401-414 ◽  
Author(s):  
Robert R. King ◽  
Daniel J. Lea ◽  
Matthew J. Martin ◽  
Isabelle Mirouze ◽  
Julian Heming
Author(s):  
Stefano Federico ◽  
Marco Petracca ◽  
Giulia Panegrossi ◽  
Stefano Dietrich

Abstract. This study shows the application of a total lightning data assimilation technique to the RAMS (Regional Atmospheric Modeling System) forecast. The method, which can be used at high horizontal resolution, helps to initiate convection whenever flashes are observed by adding water vapour to the model grid column. The water vapour is added as a function of the flash rate, local temperature and graupel mixing ratio. The methodology is set-up to improve the short-term (3 h) precipitation forecast and can be used in real-time forecasting applications. However, results are also presented for the daily precipitation for comparison with other studies. The methodology is applied to twenty cases occurred in fall 2012, that were characterized by widespread convection and lightning activity. For these cases a detailed dataset of hourly precipitation containing thousands of raingauges over Italy, which is the target of this study, is available through the HyMeX (HYdrological cycle in the Mediterranean Experiment) initiative. This dataset gives the unique opportunity to verify the precipitation forecast at the short range (3 h) and over a wide area (Italy). Results for the 27 October case study show how the methodology works and its positive impact on the 3 h precipitation forecast. In particular, the model represents better the convection over the sea using the lightning data assimilation and, when convection is advected over the land, the precipitation forecast improves over the land. It is also shown that the precise location of the convection by lightning data assimilation, improves the precipitation forecast at fine scales (meso-β). The application of the methodology to twenty cases gives a statistically robust evaluation of the impact of the total lightning data assimilation on the model performance. Results show an improvement of all statistical scores, with the exception of the Bias. The Probability of Detection (POD) increases by 3–5 % for the 3 h forecast and by more than 5 % for daily precipitation, depending on the precipitation threshold considered. Score differences between simulations with or without data assimilation are significant at 95 % level for most scores and thresholds considered, showing the positive and statistically robust impact of the lightning data assimilation on the precipitation forecast.


2017 ◽  
Vol 17 (1) ◽  
pp. 61-76 ◽  
Author(s):  
Stefano Federico ◽  
Marco Petracca ◽  
Giulia Panegrossi ◽  
Stefano Dietrich

Abstract. This study shows the application of a total lightning data assimilation technique to the RAMS (Regional Atmospheric Modeling System) forecast. The method, which can be used at high horizontal resolution, helps to initiate convection whenever flashes are observed by adding water vapour to the model grid column. The water vapour is added as a function of the flash rate, local temperature, and graupel mixing ratio. The methodology is set up to improve the short-term (3 h) precipitation forecast and can be used in real-time forecasting applications. However, results are also presented for the daily precipitation for comparison with other studies. The methodology is applied to 20 cases that occurred in fall 2012, which were characterized by widespread convection and lightning activity. For these cases a detailed dataset of hourly precipitation containing thousands of rain gauges over Italy, which is the target area of this study, is available through the HyMeX (HYdrological cycle in the Mediterranean Experiment) initiative. This dataset gives the unique opportunity to verify the precipitation forecast at the short range (3 h) and over a wide area (Italy). Results for the 27 October case study show how the methodology works and its positive impact on the 3 h precipitation forecast. In particular, the model represents better convection over the sea using the lightning data assimilation and, when convection is advected over the land, the precipitation forecast improves over the land. It is also shown that the precise location of convection by lightning data assimilation improves the precipitation forecast at fine scales (meso-β). The application of the methodology to 20 cases gives a statistically robust evaluation of the impact of the total lightning data assimilation on the model performance. Results show an improvement of all statistical scores, with the exception of the bias. The probability of detection (POD) increases by 3–5 % for the 3 h forecast and by more than 5 % for daily precipitation, depending on the precipitation threshold considered. Score differences between simulations with or without data assimilation are significant at 95 % level for most scores and thresholds considered, showing the positive and statistically robust impact of the lightning data assimilation on the precipitation forecast.


2008 ◽  
Vol 9 (6) ◽  
pp. 1301-1317 ◽  
Author(s):  
Guillaume Thirel ◽  
Fabienne Rousset-Regimbeau ◽  
Eric Martin ◽  
Florence Habets

Abstract Ensemble streamflow prediction systems are emerging in the international scientific community in order to better assess hydrologic threats. Two ensemble streamflow prediction systems (ESPSs) were set up at Météo-France using ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System for the first one, and from the Prévision d’Ensemble Action de Recherche Petite Echelle Grande Echelle (PEARP) ensemble prediction system of Météo-France for the second. This paper presents the evaluation of their capacities to better anticipate severe hydrological events and more generally to estimate the quality of both ESPSs on their globality. The two ensemble predictions were used as input for the same hydrometeorological model. The skills of both ensemble streamflow prediction systems were evaluated over all of France for the precipitation input and streamflow prediction during a 569-day period and for a 2-day short-range scale. The ensemble streamflow prediction system based on the PEARP data was the best for floods and small basins, and the ensemble streamflow prediction system based on the ECMWF data seemed the best adapted for low flows and large basins.


2020 ◽  
Vol 35 (4) ◽  
pp. 1345-1362 ◽  
Author(s):  
Paula Maldonado ◽  
Juan Ruiz ◽  
Celeste Saulo

AbstractSpecification of suitable initial conditions to accurately forecast high-impact weather events associated with intense thunderstorms still poses a significant challenge for convective-scale forecasting. Radar data assimilation has been showing encouraging results to produce an accurate estimate of the state of the atmosphere at the mesoscale, as it combines high-spatiotemporal-resolution observations with convection-permitting numerical weather prediction models. However, many open questions remain regarding the configuration of state-of-the-art data assimilation systems at the mesoscale and their potential impact upon short-range weather forecasts. In this work, several observing system simulation experiments of a mesoscale convective system were performed to assess the sensitivity of the local ensemble transform Kalman filter to both relaxation-to-prior spread (RTPS) inflation and horizontal localization of the error covariance matrix. Realistic large-scale forcing and model errors have been taken into account in the simulation of reflectivity and Doppler velocity observations. Overall, the most accurate analyses in terms of RMSE were produced with a relatively small horizontal localization cutoff radius (~3.6–7.3 km) and large RTPS inflation parameter (~0.9–0.95). Additionally, the impact of horizontal localization on short-range ensemble forecast was larger compared to inflation, almost doubling the lead times up to which the effect of using a more accurate state to initialize the forecast persisted.


2013 ◽  
Vol 141 (1) ◽  
pp. 93-111
Author(s):  
Luiz F. Sapucci ◽  
Dirceu L. Herdies ◽  
Renata W. B. Mendonça

Abstract Water vapor plays a crucial role in atmospheric processes and its distribution is associated with cloud-cover fraction and rainfall. The inclusion of integrated water vapor (IWV) estimates in numerical weather prediction improves the vertical structure of the humidity analysis and consequently contributes to obtaining a more realistic atmospheric state. Currently, satellite remote sensing is the most important source of humidity measurements in the Southern Hemisphere, providing information with good horizontal resolution and global coverage. In this study, the inclusion of IWV retrieved from the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU) and Special Sensor Microwave Imager (SSM/I) were investigated as additional information in the Physical-space Statistical Analysis System (PSAS), which is the operational data assimilation system at the Center for Weather Forecasting and Climate Studies of the Brazilian National Institute for Space Research (CPTEC/INPE). Experiments were carried out with and without the assimilation of IWV values from both sensors. Results show that, in general, the IWV assimilation reduces the error in short-range forecasts of humidity profile, particularly over tropical regions. In these experiments, an analysis of the impact of the inclusion of IWV values from SSM/I and AIRS/AMSU sensors was done. Results indicated that the impact of the SSM/I values is significant over high-latitude oceanic regions in the Southern Hemisphere, while the impact of AIRS/AMSU values is more significant over continental regions where surface measurements are scarce, such as the Amazonian region. In that area the assimilation of IWV values from the AIRS/AMSU sensor shows a tendency to reduce the overestimate of the precipitation in short-range forecasts.


2015 ◽  
Vol 143 (11) ◽  
pp. 4678-4694 ◽  
Author(s):  
D. J. Lea ◽  
I. Mirouze ◽  
M. J. Martin ◽  
R. R. King ◽  
A. Hines ◽  
...  

Abstract A new coupled data assimilation (DA) system developed with the aim of improving the initialization of coupled forecasts for various time ranges from short range out to seasonal is introduced. The implementation here is based on a “weakly” coupled data assimilation approach whereby the coupled model is used to provide background information for separate ocean–sea ice and atmosphere–land analyses. The increments generated from these separate analyses are then added back into the coupled model. This is different from the existing Met Office system for initializing coupled forecasts, which uses ocean and atmosphere analyses that have been generated independently using the FOAM ocean data assimilation system and NWP atmosphere assimilation systems, respectively. A set of trials has been run to investigate the impact of the weakly coupled data assimilation on the analysis, and on the coupled forecast skill out to 5–10 days. The analyses and forecasts have been assessed by comparing them to observations and by examining differences in the model fields. Encouragingly for this new system, both ocean and atmospheric assessments show the analyses and coupled forecasts produced using coupled DA to be very similar to those produced using separate ocean–atmosphere data assimilation. This work has the benefit of highlighting some aspects on which to focus to improve the coupled DA results. In particular, improving the modeling and data assimilation of the diurnal SST variation and the river runoff should be examined.


2020 ◽  
Author(s):  
Juwon Kim ◽  
Hae-Jin Kong ◽  
Hyuncheol Shin

<p>Multi-model ensemble using statistical post-processing is one of the methods to provide the impact of uncertainties of the Numerical Weather Prediction (NWP) models, with low cost and better accuracy for extreme weather forecasts. Extreme weather events such as heat/cold waves, windstorms, and heavy rainfall result in severe damage in human life and properties. However, the performance of the NWP models, particularly, heavy rain forecast is still low due to the intermittent and non-Gaussian properties. The light rain tends to be overestimated and the strong rain tends to be underestimated averagely on the NWP models. Thus the multi-model ensemble using statistical post-processing is activated to correct the discrepancies between the observation and the model intensity of precipitation.<br>The aim of this study is to provide the improvement of precipitation forecasts in probabilistic and deterministic aspects using a multi-model ensemble method with more weights on the less error and without any bias correction. Six types of models, namely, Local Data assimilation and Prediction System (LDPS), Local ENsemble System (LENS), Global Data assimilation and Prediction System (GDPS), Ensemble Prediction System-Global (EPSG) of Korea Meteorological Administration (KMA), the single and ensemble models of European Centre for Medium-Range Weather Forecasts (ECMWF), are used to blend. The preliminary results of the multi-model ensemble show similar results to the ECMWF ensemble mean in deterministic for 3-hourly accumulated precipitation over the East Asia and the middle of the performance among individual models in probabilistic over the South Korea. More details of the methodology, results, and improvements will be discussed in the presentation.</p>


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 84
Author(s):  
Xubin Zhang ◽  
Meiling Chen

To improve the landfalling tropical cyclone (TC) forecasting, the pseudo inner-core observations derived from the optimal-member forecast (OPT) and its probability-matched mean (OPTPM) of a mesoscale ensemble prediction system, namely TREPS, were assimilated in a partial-cycle data assimilation (DA) system based on the three-dimensional variational method. The impact of assimilating the derived data on the 12-h TC forecasting was evaluated over 17 TCs making landfall on Southern China during 2014–2016, based on the convection-permitting Global/Regional Assimilation and Prediction System (GRAPES) model with the horizontal resolution of 0.03°. The positive impacts of assimilating the OPT-derived data were found in predicting some variables, such as the TC intensity, lighter rainfall, and stronger surface wind, with statistically significant impacts at partial lead times. Compared with assimilation of the OPT-derived data, assimilation of the OPTPM-derived data generally brought improvements in the forecasts of TC track, intensity, lighter rainfall, and weaker surface wind. When the data with higher accuracy was assimilated, the positive impacts of assimilating the OPTPM-derived data on the forecasts of heavier rainfall and stronger surface wind were more evident. The improved representation of initial TC circulation due to assimilating the derived data improved the TC forecasting, which was intuitively illustrated in the case study of Mujigae.


Sign in / Sign up

Export Citation Format

Share Document