RESUMMED CROSS SECTION FOR HIGGS BOSON PRODUCTION

Author(s):  
DANIEL DE FLORIAN
2015 ◽  
Vol 91 (7) ◽  
Author(s):  
Martin Flechl ◽  
Richard Klees ◽  
Michael Krämer ◽  
Michael Spira ◽  
Maria Ubiali

2020 ◽  
Vol 80 (10) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

AbstractHiggs boson properties are studied in the four-lepton decay channel (where lepton = e, $$\mu $$ μ ) using 139 $$\hbox {fb}^{-1}$$ fb - 1 of proton–proton collision data recorded at $$\sqrt{s}=$$ s = 13 TeV by the ATLAS experiment at the Large Hadron Collider. The inclusive cross-section times branching ratio for $$H\rightarrow ZZ^*$$ H → Z Z ∗ decay is measured to be $$1.34 \pm 0.12$$ 1.34 ± 0.12  pb for a Higgs boson with absolute rapidity below 2.5, in good agreement with the Standard Model prediction of $$1.33 \pm 0.08$$ 1.33 ± 0.08  pb. Cross-sections times branching ratio are measured for the main Higgs boson production modes in several exclusive phase-space regions. The measurements are interpreted in terms of coupling modifiers and of the tensor structure of Higgs boson interactions using an effective field theory approach. Exclusion limits are set on the CP-even and CP-odd ‘beyond the Standard Model’ couplings of the Higgs boson to vector bosons, gluons and top quarks.


1990 ◽  
Vol 05 (09) ◽  
pp. 667-674 ◽  
Author(s):  
V. BARGER ◽  
T. HAN

The production of two standard model Higgs bosons via the WW fusion process e+e− →[Formula: see text] would test the predicted HHH, HWW and HHWW couplings. At TeV energies this fusion cross section dominates over that from e+e− →ZHH and would give significant event rates for mH ≲ 1/2 MZ at high luminosity e+e− colliders. We evaluate the rates and present the dynamical distributions.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Leandro Cieri ◽  
Carlo Oleari ◽  
Marco Rocco

Abstract We consider the production of a colourless system at next-to-leading order in the strong coupling constant $$\alpha _{{\displaystyle } {\scriptstyle } {\scriptscriptstyle } {\scriptscriptstyle } \mathrm{S}}$$αS. We impose a transverse-momentum cutoff, $$q_{{\displaystyle } {\scriptstyle } {\scriptscriptstyle } {\scriptscriptstyle } \mathrm{T}}^{{\displaystyle } {\scriptstyle } {\scriptscriptstyle } {\scriptscriptstyle } \mathrm{cut}}$$qTcut, on the colourless final state and we compute the power corrections for the inclusive cross section in the cutoff, up to the fourth power. The study of the dependence of the cross section on $$q_{{\displaystyle } {\scriptstyle } {\scriptscriptstyle } {\scriptscriptstyle } \mathrm{T}}^{{\displaystyle } {\scriptstyle } {\scriptscriptstyle } {\scriptscriptstyle } \mathrm{cut}}$$qTcut allows for an understanding of its behaviour at the boundaries of the phase space, giving hints on the structure at all orders in $$\alpha _{{\displaystyle } {\scriptstyle } {\scriptscriptstyle } {\scriptscriptstyle } \mathrm{S}}$$αS and on the identification of universal patterns. The knowledge of such power corrections is also a required ingredient in order to reduce the dependence on the transverse-momentum cutoff of the QCD cross sections at higher orders, when the $$q_{\mathrm{T}}$$qT-subtraction method is applied. We present analytic results for both Drell–Yan vector boson and Higgs boson production in gluon fusion and we illustrate a process-independent procedure for the calculation of the all-order power corrections in the cutoff. In order to show the impact of the power-correction terms, we present selected numerical results and discuss how the residual dependence on $$q_{{\displaystyle } {\scriptstyle } {\scriptscriptstyle } {\scriptscriptstyle } \mathrm{T}}^{{\displaystyle } {\scriptstyle } {\scriptscriptstyle } {\scriptscriptstyle } \mathrm{cut}}$$qTcut affects the total cross section for Drell–Yan Z production and Higgs boson production via gluon fusion at the LHC.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1140/epjc/s10052-020-8227-9


2014 ◽  
Vol 29 (28) ◽  
pp. 1446002 ◽  
Author(s):  
Konstantin Goulianos

We present a review of central exclusive dijet production in [Formula: see text] collisions, where the proton and antiproton emerge intact, and only two jets of transverse energy above a certain threshold are present in the final state. The results are published in two papers by the Collider Detector at Fermilab (CDF) Collaboration, a PRL (2000) and a PRD (2008), based on data collected at [Formula: see text] and 1.96 TeV, respectively, and a D0 Collaboration paper from studies at 1.96 TeV. In all three cases predictions for the cross-section of Higgs boson production are discussed, a process that proceeds via a similar mechanism as dijet production. Roman Pot Spectrometers equipped with tracking detectors are used to measure the outgoing antiproton (CDF and D0) and proton (D0), and special forward detectors are employed to help reduce backgrounds and enrich the data in diffractive and exclusive dijet events.


Sign in / Sign up

Export Citation Format

Share Document