A RESOLUTION OF SINGULARITIES OF A TORIC VARIETY AND A NON-DEGENERATE HYPERSURFACE

Author(s):  
SHIHOKO ISHII
2018 ◽  
Vol 19 (3) ◽  
pp. 801-819
Author(s):  
Mircea Mustaţă ◽  
Sebastián Olano ◽  
Mihnea Popa

Given an $n$-dimensional variety $Z$ with rational singularities, we conjecture that if $f:Y\rightarrow Z$ is a resolution of singularities whose reduced exceptional divisor $E$ has simple normal crossings, then $$\begin{eqnarray}\displaystyle R^{n-1}f_{\ast }\unicode[STIX]{x1D6FA}_{Y}(\log E)=0. & & \displaystyle \nonumber\end{eqnarray}$$ We prove this when $Z$ has isolated singularities and when it is a toric variety. We deduce that for a divisor $D$ with isolated rational singularities on a smooth complex $n$-dimensional variety $X$, the generation level of Saito’s Hodge filtration on the localization $\mathscr{O}_{X}(\ast D)$ is at most $n-3$.


Author(s):  
Ugo Bruzzo ◽  
William D. Montoya

AbstractFor a quasi-smooth hypersurface X in a projective simplicial toric variety $$\mathbb {P}_{\Sigma }$$ P Σ , the morphism $$i^*:H^p(\mathbb {P}_{\Sigma })\rightarrow H^p(X)$$ i ∗ : H p ( P Σ ) → H p ( X ) induced by the inclusion is injective for $$p=\dim X$$ p = dim X and an isomorphism for $$p<\dim X-1$$ p < dim X - 1 . This allows one to define the Noether–Lefschetz locus $$\mathrm{NL}_{\beta }$$ NL β as the locus of quasi-smooth hypersurfaces of degree $$\beta $$ β such that $$i^*$$ i ∗ acting on the middle algebraic cohomology is not an isomorphism. We prove that, under some assumptions, if $$\dim \mathbb {P}_{\Sigma }=2k+1$$ dim P Σ = 2 k + 1 and $$k\beta -\beta _0=n\eta $$ k β - β 0 = n η , $$n\in \mathbb {N}$$ n ∈ N , where $$\eta $$ η is the class of a 0-regular ample divisor, and $$\beta _0$$ β 0 is the anticanonical class, every irreducible component V of the Noether–Lefschetz locus quasi-smooth hypersurfaces of degree $$\beta $$ β satisfies the bounds $$n+1\leqslant \mathrm{codim}\,Z \leqslant h^{k-1,\,k+1}(X)$$ n + 1 ⩽ codim Z ⩽ h k - 1 , k + 1 ( X ) .


Author(s):  
Ugo Bruzzo ◽  
William Montoya

AbstractWe establish the Hodge conjecture for some subvarieties of a class of toric varieties. First we study quasi-smooth intersections in a projective simplicial toric variety, which is a suitable notion to generalize smooth complete intersection subvarieties in the toric environment, and in particular quasi-smooth hypersurfaces. We show that under appropriate conditions, the Hodge conjecture holds for a very general quasi-smooth intersection subvariety, generalizing the work on quasi-smooth hypersurfaces of the first author and Grassi in Bruzzo and Grassi (Commun Anal Geom 28: 1773–1786, 2020). We also show that the Hodge Conjecture holds asymptotically for suitable quasi-smooth hypersurface in the Noether–Lefschetz locus, where “asymptotically” means that the degree of the hypersurface is big enough, under the assumption that the ambient variety $${{\mathbb {P}}}_\Sigma ^{2k+1}$$ P Σ 2 k + 1 has Picard group $${\mathbb {Z}}$$ Z . This extends to a class of toric varieties Otwinowska’s result in Otwinowska (J Alg Geom 12: 307–320, 2003).


Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Ivan Arzhantsev ◽  
Ivan Bazhov

AbstractLet X be an affine toric variety. The total coordinates on X provide a canonical presentation $$\bar X \to X$$ of X as a quotient of a vector space $$\bar X$$ by a linear action of a quasitorus. We prove that the orbits of the connected component of the automorphism group Aut(X) on X coincide with the Luna strata defined by the canonical quotient presentation.


2003 ◽  
Vol 86 (2) ◽  
pp. 327-357 ◽  
Author(s):  
A. BRAVO ◽  
O. VILLAMAYOR U.

Let $X$ be a closed subscheme embedded in a scheme $W$, smooth over a field ${\bf k}$ of characteristic zero, and let ${\mathcal I} (X)$ be the sheaf of ideals defining $X$. Assume that the set of regular points of $X$ is dense in $X$. We prove that there exists a proper, birational morphism, $\pi : W_r \longrightarrow W$, obtained as a composition of monoidal transformations, so that if $X_r \subset W_r$ denotes the strict transform of $X \subset W$ then:(1) the morphism $\pi : W_r \longrightarrow W$ is an embedded desingularization of $X$ (as in Hironaka's Theorem);(2) the total transform of ${\mathcal I} (X)$ in ${\mathcal O}_{W_r}$ factors as a product of an invertible sheaf of ideals ${\mathcal L}$ supported on the exceptional locus, and the sheaf of ideals defining the strict transform of $X$ (that is, ${\mathcal I}(X){\mathcal O}_{W_r} = {\mathcal L} \cdot {\mathcal I}(X_r)$).Thus (2) asserts that we can obtain, in a simple manner, the equations defining the desingularization of $X$.2000 Mathematical Subject Classification: 14E15.


10.37236/5038 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Laura Escobar

Bott-Samelson varieties are a twisted product of $\mathbb{C}\mathbb{P}^1$'s with a map into $G/B$. These varieties are mostly studied in the case in which the map into $G/B$ is birational to the image; however in this paper we study a fiber of this map when it is not birational. We prove that in some cases the general fiber, which we christen a brick manifold, is a toric variety. In order to do so we use the moment map of a Bott-Samelson variety to translate this problem into one in terms of the "subword complexes" of Knutson and Miller. Pilaud and Stump realized certain subword complexes as the dual of the boundary of a polytope which generalizes the brick polytope defined by Pilaud and Santos. For a nice family of words, the brick polytope is the generalized associahedron realized by Hohlweg, Lange and Thomas. These stories connect in a nice way: we show that the moment polytope of the brick manifold is the brick polytope. In particular, we give a nice description of the toric variety of the associahedron. We give each brick manifold a stratification dual to the subword complex. In addition, we relate brick manifolds to Brion's resolutions of Richardon varieties.


1992 ◽  
Vol 22 (1-2) ◽  
pp. 509-527 ◽  
Author(s):  
Markus Eikelberg
Keyword(s):  

1968 ◽  
Vol 52 (379) ◽  
pp. 88
Author(s):  
J. A. Todd ◽  
S. S. Abhyankar

Sign in / Sign up

Export Citation Format

Share Document