AXIALLY SYMMETRIC FOCUSING OF LIGHT IN DRY LASER CLEANING AND NANOPATTERNING

2007 ◽  
pp. 113-132
Author(s):  
J. KOFLER ◽  
N. ARNOLD
2000 ◽  
Vol 179 ◽  
pp. 379-380
Author(s):  
Gaetano Belvedere ◽  
Kirill Kuzanyan ◽  
Dmitry Sokoloff

Extended abstractHere we outline how asymptotic models may contribute to the investigation of mean field dynamos applied to the solar convective zone. We calculate here a spatial 2-D structure of the mean magnetic field, adopting real profiles of the solar internal rotation (the Ω-effect) and an extended prescription of the turbulent α-effect. In our model assumptions we do not prescribe any meridional flow that might seriously affect the resulting generated magnetic fields. We do not assume apriori any region or layer as a preferred site for the dynamo action (such as the overshoot zone), but the location of the α- and Ω-effects results in the propagation of dynamo waves deep in the convection zone. We consider an axially symmetric magnetic field dynamo model in a differentially rotating spherical shell. The main assumption, when using asymptotic WKB methods, is that the absolute value of the dynamo number (regeneration rate) |D| is large, i.e., the spatial scale of the solution is small. Following the general idea of an asymptotic solution for dynamo waves (e.g., Kuzanyan & Sokoloff 1995), we search for a solution in the form of a power series with respect to the small parameter |D|–1/3(short wavelength scale). This solution is of the order of magnitude of exp(i|D|1/3S), where S is a scalar function of position.


2001 ◽  
Vol 7 (2s) ◽  
pp. 19-25
Author(s):  
A.A. Loginov ◽  
◽  
Yu.I. Samoilenko ◽  
V.A. Tkachenko ◽  
◽  
...  
Keyword(s):  
Mhd Flow ◽  

1997 ◽  
Author(s):  
J. M. Lee ◽  
K. G. Watkins ◽  
A. Kearns ◽  
W. M. Steen ◽  
J. D. Ryan ◽  
...  

Author(s):  
Qingzeng Ma ◽  
Dongbin Zhang ◽  
Shuo Jin ◽  
Yuan Ren ◽  
Wei Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document