INFLUENCE OF TEMPERATURE OF HIGH PRESSURE SINTERING ON STRUCTURE AND PROPERTIES OF PARTIALLY STABILIZED ZIRCONIA

Author(s):  
V. URBANOVICH ◽  
A. CHUEVSKI ◽  
A. KOPYLOV ◽  
I. KOVALENKO ◽  
T. ULYANOVA ◽  
...  
2011 ◽  
Vol 49 (5) ◽  
pp. 685-689 ◽  
Author(s):  
V. V. Milyavskii ◽  
A. S. Savinykh ◽  
F. A. Akopov ◽  
L. B. Borovkova ◽  
T. I. Borodina ◽  
...  

Author(s):  
E. F. Koch

Because of the extremely rigid lattice structure of diamond, generating new dislocations or moving existing dislocations in diamond by applying mechanical stress at ambient temperature is very difficult. Analysis of portions of diamonds deformed under bending stress at elevated temperature has shown that diamond deforms plastically under suitable conditions and that its primary slip systems are on the ﹛111﹜ planes. Plastic deformation in diamond is more commonly observed during the high temperature - high pressure sintering process used to make diamond compacts. The pressure and temperature conditions in the sintering presses are sufficiently high that many diamond grains in the sintered compact show deformed microtructures.In this report commercially available polycrystalline diamond discs for rock cutting applications were analyzed to study the deformation substructures in the diamond grains using transmission electron microscopy. An individual diamond particle can be plastically deformed in a high pressure apparatus at high temperature, but it is nearly impossible to prepare such a particle for TEM observation, since any medium in which the diamond is mounted wears away faster than the diamond during ion milling and the diamond is lost.


2018 ◽  
Vol 101 (9) ◽  
pp. 3917-3923 ◽  
Author(s):  
Martin B. Østergaard ◽  
Rasmus R. Petersen ◽  
Jakob König ◽  
Michal Bockowski ◽  
Yuanzheng Yue

1981 ◽  
Vol 16 (5) ◽  
pp. 1428-1431 ◽  
Author(s):  
R. H. J. Hannink ◽  
M. V. Swain

2010 ◽  
Vol 670 ◽  
pp. 21-27 ◽  
Author(s):  
Tatiana Prikhna ◽  
Wolfgang Gawalek ◽  
Yaroslav Savchuk ◽  
Athanasios G. Mamalis ◽  
Vasiliy Tkach ◽  
...  

The critical current density, jc, of high-pressure synthesized MgB2-based balk materials correlates with the amount and distribution of higher borides (MgB12) and Mg-B-O inclusions, which in tern correlates with the synthesis temperature and presence of additions (Ti, Ta, SiC). High-pressure-synthesized materials with near MgB12 composition of matrix exhibited superconducting transition temperature, Tc, of about 37 K, rather high jc (5∙105 and 103 A/cm2 in 0 T and 3.5 T, respectively, at 20 K) and doubled matrix microhardness: 25±1.1 GPa at 4.9 N –load as compared to materials with MgB2).


Sign in / Sign up

Export Citation Format

Share Document