Change in the structure and properties of high pressure polyethylene during ozone oxidation. Effect of orientation and strain

1990 ◽  
Vol 32 (4) ◽  
pp. 732-736
Author(s):  
S.G Karpova ◽  
A.V Russak ◽  
A.A Popov ◽  
G.E Zaikov
2021 ◽  
pp. 49-53
Author(s):  
S.K. Ragimova ◽  

The effect of nanofilles additives containing copper oxide nanoparticles stabilized by a polymer matrix of high-pressure polyethylene obtained by the mechanochemical method on features of the structure and properties of metal-containing nanocomposites based on isotactic polypropylene and high-pressure polyethylene was studied using differential thermal (DTA) and X-ray phase (XRD) analyzes. The improvement of strength, deformation and rheological parameters, as well as thermal-oxidative stability of the obtained nanocomposites was revealed, that apparently, is associated with the synergistic effect of interfacial interaction of copper-containing nanoparticles in the PE matrix with the components of the PP/PE polymer composition


2021 ◽  
pp. 38-43
Author(s):  
T.M. Gulieva ◽  

The influence of additives of nanofillers containing nanoparticles of copper oxides stabilized by a polymer matrix of maleinized high-pressure polyethylene obtained by the mechano-chemical method on the structure and properties features of metal-containing nanocomposites based on isotactic polypropylene and butadiene-nitrile rubber by x-ray phase and differential thermal analyses is studied. The improvement of strength, deformation and rheological parameters, as well as thermal-oxidative stability of the obtained nanocomposites was revealed, that is probably due to the synergistic effect of interaction of copper-containing nanoparticles with maleic groups of maleinated high-pressure polyethylene. It is shown that nanocomposites based on isotactic polypropylene and butadiene-nitrile rubber can be processed both by pressing method and by injection molding and extrusion methods that expands the scope of its application


2021 ◽  
Vol 11 ◽  
pp. 47-53
Author(s):  
N. I. Kurbanova ◽  
◽  
S. K. Ragimova ◽  
N. A. Alimirzoeva ◽  
N. Ya. Ishenko ◽  
...  

The effect of nanofiller (NF) additives containing zink oxide nanoparticles stabilized by a polymer matrix of high pressure polyethylene obtained by the mechanochemical method on the structure and properties of metal-containing nanocomposites based on isotactic polypropylene (PP) and high pressure polyethylene (PE) using differential thermal (DTA) and X-ray phase (XRF) analyzes. The improvement of strength, deformation and rheological parameters, as well as thermal-oxidative stability of the obtained nanocomposites was revealed, which, apparently, is associated with the synergistic effect of interfacial interaction of zink — containing nanoparticles in the PE matrix with the components of the PP/PE polymer composition. It is shown that nanocomposites based on PP/PE/NF can be processed both by pressing method and by injection molding and extrusion methods, which expands the scope of its application.


2020 ◽  
pp. 59-64
Author(s):  
N. I. Kurbanova ◽  
◽  
T. M. Gulieva ◽  
N. Ya. Ischenko ◽  
◽  
...  

The effect of additives of nanofillers (NF) containing nanoparticles (NP) of copper oxide, stabilized by a polymer matrix of maleized polyethylene (MPE), obtained by the mechanochemical method, on the properties of composites based on isotactic polypropylene (PP) and high-pressure polyethylene (PE) was studied by X-ray phase (XRD) and thermogravimetric (TGA) analyzes. The enhancement of strength, deformation, and rheological parameters, as well as the thermo-oxidative stability of the obtained nanocomposites was revealed, which, apparently, is due to the synergistic effect of the interaction of copper-containing nanoparticles with anhydride groups of MPE. It is shown that nanocomposites based on PP/PE/NF can be processed both by pressing and injection molding and extrusion, which expands the scope of its application.


2010 ◽  
Vol 670 ◽  
pp. 21-27 ◽  
Author(s):  
Tatiana Prikhna ◽  
Wolfgang Gawalek ◽  
Yaroslav Savchuk ◽  
Athanasios G. Mamalis ◽  
Vasiliy Tkach ◽  
...  

The critical current density, jc, of high-pressure synthesized MgB2-based balk materials correlates with the amount and distribution of higher borides (MgB12) and Mg-B-O inclusions, which in tern correlates with the synthesis temperature and presence of additions (Ti, Ta, SiC). High-pressure-synthesized materials with near MgB12 composition of matrix exhibited superconducting transition temperature, Tc, of about 37 K, rather high jc (5∙105 and 103 A/cm2 in 0 T and 3.5 T, respectively, at 20 K) and doubled matrix microhardness: 25±1.1 GPa at 4.9 N –load as compared to materials with MgB2).


2015 ◽  
Vol 57 (5-6) ◽  
pp. 320-328 ◽  
Author(s):  
A. V. Levina ◽  
L. A. Mal’tseva ◽  
A. A. Arkhangel’skaya ◽  
Yu. N. Loginov ◽  
N. N. Ozerets ◽  
...  

2021 ◽  
Vol 5 ◽  
pp. 76-81
Author(s):  
N.I. Kurbanova ◽  
◽  
S. K. Ragimova ◽  
N. A. Alimirzoeva ◽  
N. Ya. Ishenko ◽  
...  

The influence of additives of nanofillers (NF) containing nanoparticles of copper oxides stabilized by a polymer matrix of high-pressure polyethylene (PE) obtained by the mechanochemical method on the structure and properties features of metal-containing nanocomposites based on isotactic polypropylene (PP) and butadiene-nitrile rubber (BNK) is studied by X-ray phase (XRD) and differential thermal analyses(DTA). The improvement of strength, deformation and rheological parameters, as well as thermal-oxidative stability of the obtained nanocomposites was revealed, which, apparently, is associated with the synergistic effect of interfacial interaction of copper-containing nanoparticles in the PE matrix with the components of the PP/BNK polymer composition. It is shown that nanocomposites based on PP/BNK/NF can be processed both by pressing method and by injection molding and extrusion methods, which expands the scope of its application.


ChemInform ◽  
2010 ◽  
Vol 23 (2) ◽  
pp. no-no
Author(s):  
E. S. ALEKSEEV ◽  
S. V. POPOVA ◽  
V. I. LARCHEV

Sign in / Sign up

Export Citation Format

Share Document