scholarly journals CODALEMA: A COSMIC RAY AIR SHOWER RADIO DETECTION EXPERIMENT

Author(s):  
D. ARDOUIN ◽  
A. BELLETOILE ◽  
D. CHARRIER ◽  
R. DALLIER ◽  
L. DENIS ◽  
...  
2006 ◽  
Vol 21 (supp01) ◽  
pp. 192-196 ◽  
Author(s):  
D. ARDOUIN ◽  
A. BELLETOILE ◽  
D. CHARRIER ◽  
R. DALLIER ◽  
L. DENIS ◽  
...  

The CODALEMA experimental device currently detects and characterizes the radio contribution of cosmic ray air showers : arrival directions and electric field topologies of radio transient signals associated to cosmic rays are extracted from the antenna signals. The measured rate, about 1 event per day, corresponds to an energy threshold around 5.1016eV. These results allow to determine the perspectives offered by the present experimental design for radiodetection of Ultra High Energy Cosmic Rays at a larger scale.


2006 ◽  
Vol 21 (supp01) ◽  
pp. 168-181 ◽  
Author(s):  
A. HORNEFFER ◽  
W. D. APEL ◽  
F. BADEA ◽  
L. BÄHREN ◽  
K. BEKK ◽  
...  

Measuring radio pulses from cosmic ray air showers offers various new opportunities. New digital radio receivers allow measurements of these radio pulses even in environments that have lots of radio interference. With high bandwidth ADCs and fast data processing it is possible to store the whole waveform information in digital form and analyse transient events like air showers even after they have been recorded. Digital filtering and beam forming can be used to suppress the radio interference so that it is possible to measure the radio pulses even in radio loud environments. LOPES is a prototype station for the new digital radio interferometer LOFAR and is tailored to measure air showers. For this it is located at the site of the KASCADE-Grande air shower experiment. Already with the first phase of LOPES we have been able to measure radio pulses from air showers and show correlations between the radio pulse height and air shower parameters. The first part gives an introduction and presents the science results of LOPES, while the second part presents the hard- and software that enables LOPES to detect air short pulses.


2008 ◽  
Vol 175-176 ◽  
pp. 227-232
Author(s):  
A. Haungs ◽  
W.D. Apel ◽  
J.C. Arteaga ◽  
T. Asch ◽  
A.F. Badea ◽  
...  
Keyword(s):  

2018 ◽  
Vol 33 (26) ◽  
pp. 1850153 ◽  
Author(s):  
L. B. Arbeletche ◽  
V. P. Gonçalves ◽  
M. A. Müller

The understanding of the basic properties of the ultrahigh-energy extensive air showers is dependent on the description of hadronic interactions in an energy range beyond that probed by the LHC. One of the uncertainties present in the modeling of air showers is the treatment of diffractive interactions, which are dominated by nonperturbative physics and usually described by phenomenological models. These interactions are expected to affect the development of the air showers, since they provide a way of transporting substantial amounts of energy deep in the atmosphere, modifying the global characteristics of the shower profile. In this paper, we investigate the impact of diffractive interactions in the observables that can be measured in hadronic collisions at high energies and ultrahigh-energy cosmic ray interactions. We consider three distinct phenomenological models for the treatment of diffractive physics and estimate the influence of these interactions on the elasticity, number of secondaries, longitudinal air shower profiles and muon densities for proton-air and iron-air collisions at different primary energies. Our results demonstrate that even for the most recent models, diffractive events have a non-negligible effect on the observables and that the distinct approaches for these interactions, present in the phenomenological models, still are an important source of theoretical uncertainty for the description of the extensive air showers.


2020 ◽  
Vol 492 (3) ◽  
pp. 3984-3993 ◽  
Author(s):  
R U Abbasi ◽  
M Abe ◽  
T Abu-Zayyad ◽  
M Allen ◽  
R Azuma ◽  
...  

ABSTRACT The surface detector (SD) of the Telescope Array (TA) experiment allows us to detect indirectly photons with energies of the order of 1018 eV and higher, and to separate photons from the cosmic ray background. In this paper, we present the results of a blind search for point sources of ultra-high-energy (UHE) photons in the Northern sky using the TA SD data. The photon-induced extensive air showers are separated from the hadron-induced extensive air shower background by means of a multivariate classifier based upon 16 parameters that characterize the air shower events. No significant evidence for the photon point sources is found. The upper limits are set on the flux of photons from each particular direction in the sky within the TA field of view, according to the experiment’s angular resolution for photons. The average 95 per cent confidence level upper-limits for the point-source flux of photons with energies greater than 1018, 1018.5, 1019, 1019.5 and 1020 eV are 0.094, 0.029, 0.010, 0.0073 and 0.0058 km−2yr−1, respectively. For energies higher than 1018.5 eV, the photon point-source limits are set for the first time. Numerical results for each given direction in each energy range are provided as a supplement to this paper.


2019 ◽  
Vol 208 ◽  
pp. 08002
Author(s):  
Shoichi Ogio

The Telescope Array is the largest hybrid cosmic ray detector in the Northern hemisphere designed to measure primary particles in 4 PeV to 100 EeV range. The main TA detector consists of an air shower array of 507 plastic scintillation counters on a 1.2 km square grid and fluorescence detectors at three stations overlooking the sky above the air shower array. The experiment and its recent measurements - spectrum, composition, and anisotropy - is reviewed. Recently the construction of the TA Low energy Extension (TALE) detector, which consists of an additional fluorescence detector and an infill array, was finished. TALE lowers the energy threshold of TA down to 4 PeV. We are also constructing the TAx4 detector to increase statistics in particular at the highest energies. The current status and the future prospects of these new TAx4 experiments is reported.


2019 ◽  
Vol 216 ◽  
pp. 03004 ◽  
Author(s):  
Florian Föhrer ◽  
Tom Charnock ◽  
Anne Zilles ◽  
Matias Tueros

The detection of air-shower events via radio signals requires the development of a trigger algorithm for clean discrimination between signal and background events in order to reduce the data stream coming from false triggers. In this contribution we will describe an approach to trigger air-shower events on a single-antenna level aswell as performing an online reconstruction of the shower parameters using neural networks.


2019 ◽  
Vol 210 ◽  
pp. 05003
Author(s):  
Antony Escudie ◽  
Didier Charrier ◽  
Richard Dallier ◽  
Daniel García-Fernández ◽  
Alain Lecacheux ◽  
...  

Since 2003, significant efforts have been devoted to the understanding of the radio emission of extensive air shower in the range [20-200] MHz. Despite some studies led until the early nineties, the [1-10] MHz band has remained unused for 20 years. However, it has been measured by some pioneering experiments that extensive air shower emit a strong electric field in this band and that there is evidence of a large increase in the amplitude of the radio pulse at lower frequencies. The EXTASIS experiment, located within the Nançay Radioastronomy Observatory and supported by the CODALEMA experiment, aims to reinvestigate the [1-10] MHz band, and especially to study the so-called “Sudden Death” contribution, the expected electric field emitted by shower front when hitting the ground level. Currently, EXTASIS has confirmed some results obtained by the pioneering experiments, and tends to bring explanations to the other ones, for instance the role of the underlying atmospheric electric field. Moreover, CODALEMA has demonstrated that in the most commonly used frequency band ([20-80] MHz) the electric field profile of EAS can be well sampled, and contains all the information needed for the reconstruction of EAS: an automatic comparison between the SELFAS3 simulations and data has been developed, allowing us to reconstruct in an almost real time the primary cosmic ray characteristics.


2017 ◽  
Vol 135 ◽  
pp. 02003 ◽  
Author(s):  
Tim Huege ◽  
Justin D. Bray ◽  
Stijn Buitink ◽  
David Butler ◽  
Richard Dallier ◽  
...  
Keyword(s):  

2019 ◽  
Vol 210 ◽  
pp. 02012
Author(s):  
R. Takeishi

One of the uncertainties in ultrahigh energy cosmic ray (UHECR) observation derives from the hadronic interaction model used for air shower Monte-Carlo (MC) simulations. One may test the hadronic interaction models by comparing the measured number of muons observed at the ground from UHECR induced air showers with the MC prediction. The Telescope Array (TA) is the largest experiment in the northern hemisphere observing UHECR in Utah, USA. It aims to reveal the origin of UHECRs by studying the energy spectrum, mass composition and anisotropy of cosmic rays by utilizing an array of surface detectors (SDs) and fluorescence detectors. We studied muon densities in the UHE extensive air showers by analyzing the signal of TA SD stations for highly inclined showers. On condition that the muons contribute about 65% of the total signal, the number of particles from air showers is typically 1.88 ± 0.08 (stat.) ± 0.42 (syst.) times larger than the MC prediction with the QGSJET II-03 model for proton-induced showers. The same feature was also obtained for other hadronic interaction models, such as QGSJET II-04.


Sign in / Sign up

Export Citation Format

Share Document