2017 ◽  
Vol 12 (3) ◽  
pp. 202-212 ◽  
Author(s):  
Tham W. Shi ◽  
Wong S. Kah ◽  
Mohd S. Mohamad ◽  
Kohbalan Moorthy ◽  
Safaai Deris ◽  
...  

Author(s):  
Arnab Kumar Maity ◽  
Sang Chan Lee ◽  
Linhan Hu ◽  
Deborah Bell-pederson ◽  
Bani K. Mallick ◽  
...  

2020 ◽  
Vol 21 (S18) ◽  
Author(s):  
Sudipta Acharya ◽  
Laizhong Cui ◽  
Yi Pan

Abstract Background In recent years, to investigate challenging bioinformatics problems, the utilization of multiple genomic and proteomic sources has become immensely popular among researchers. One such issue is feature or gene selection and identifying relevant and non-redundant marker genes from high dimensional gene expression data sets. In that context, designing an efficient feature selection algorithm exploiting knowledge from multiple potential biological resources may be an effective way to understand the spectrum of cancer or other diseases with applications in specific epidemiology for a particular population. Results In the current article, we design the feature selection and marker gene detection as a multi-view multi-objective clustering problem. Regarding that, we propose an Unsupervised Multi-View Multi-Objective clustering-based gene selection approach called UMVMO-select. Three important resources of biological data (gene ontology, protein interaction data, protein sequence) along with gene expression values are collectively utilized to design two different views. UMVMO-select aims to reduce gene space without/minimally compromising the sample classification efficiency and determines relevant and non-redundant gene markers from three cancer gene expression benchmark data sets. Conclusion A thorough comparative analysis has been performed with five clustering and nine existing feature selection methods with respect to several internal and external validity metrics. Obtained results reveal the supremacy of the proposed method. Reported results are also validated through a proper biological significance test and heatmap plotting.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3627
Author(s):  
Bo Jin ◽  
Chunling Fu ◽  
Yong Jin ◽  
Wei Yang ◽  
Shengbin Li ◽  
...  

Identifying the key genes related to tumors from gene expression data with a large number of features is important for the accurate classification of tumors and to make special treatment decisions. In recent years, unsupervised feature selection algorithms have attracted considerable attention in the field of gene selection as they can find the most discriminating subsets of genes, namely the potential information in biological data. Recent research also shows that maintaining the important structure of data is necessary for gene selection. However, most current feature selection methods merely capture the local structure of the original data while ignoring the importance of the global structure of the original data. We believe that the global structure and local structure of the original data are equally important, and so the selected genes should maintain the essential structure of the original data as far as possible. In this paper, we propose a new, adaptive, unsupervised feature selection scheme which not only reconstructs high-dimensional data into a low-dimensional space with the constraint of feature distance invariance but also employs ℓ2,1-norm to enable a matrix with the ability to perform gene selection embedding into the local manifold structure-learning framework. Moreover, an effective algorithm is developed to solve the optimization problem based on the proposed scheme. Comparative experiments with some classical schemes on real tumor datasets demonstrate the effectiveness of the proposed method.


Author(s):  
L. Lazo de la Vega ◽  
W. Yu ◽  
K. Machini ◽  
C. A. Austin-Tse ◽  
L. Hao ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tingting Li ◽  
Weigao Yuan ◽  
Shuai Qiu ◽  
Jisen Shi

AbstractThe differential expression of genes is crucial for plant somatic embryogenesis (SE), and the accurate quantification of gene expression levels relies on choosing appropriate reference genes. To select the most suitable reference genes for SE studies, 10 commonly used reference genes were examined in synchronized somatic embryogenic and subsequent germinative cultures of Liriodendron hybrids by using quantitative real-time reverse transcription PCR. Four popular normalization algorithms: geNorm, NormFinder, Bestkeeper and Delta-Ct were used to select and validate the suitable reference genes. The results showed that elongation factor 1-gamma, histone H1 linker protein, glyceraldehyde-3-phosphate dehydrogenase and α-tubulin were suitable for SE tissues, while elongation factor 1-gamma and actin were best for the germinative organ tissues. Our work will benefit future studies of gene expression and functional analyses of SE in Liriodendron hybrids. It is also serves as a guide of reference gene selection in early embryonic gene expression analyses for other woody plant species.


Sign in / Sign up

Export Citation Format

Share Document