A SINGLE CHIP GENERAL PURPOSE CIRCUIT FOR SENSOR INTERFACING AND CHARACTERIZATION

Author(s):  
M. Schipani ◽  
T. Ungaretti ◽  
P. Bruschi ◽  
N. Nizza
Keyword(s):  
Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 44-46
Author(s):  
Masato Edahiro ◽  
Masaki Gondo

The pace of technology's advancements is ever-increasing and intelligent systems, such as those found in robots and vehicles, have become larger and more complex. These intelligent systems have a heterogeneous structure, comprising a mixture of modules such as artificial intelligence (AI) and powertrain control modules that facilitate large-scale numerical calculation and real-time periodic processing functions. Information technology expert Professor Masato Edahiro, from the Graduate School of Informatics at the Nagoya University in Japan, explains that concurrent advances in semiconductor research have led to the miniaturisation of semiconductors, allowing a greater number of processors to be mounted on a single chip, increasing potential processing power. 'In addition to general-purpose processors such as CPUs, a mixture of multiple types of accelerators such as GPGPU and FPGA has evolved, producing a more complex and heterogeneous computer architecture,' he says. Edahiro and his partners have been working on the eMBP, a model-based parallelizer (MBP) that offers a mapping system as an efficient way of automatically generating parallel code for multi- and many-core systems. This ensures that once the hardware description is written, eMBP can bridge the gap between software and hardware to ensure that not only is an efficient ecosystem achieved for hardware vendors, but the need for different software vendors to adapt code for their particular platforms is also eliminated.


2010 ◽  
Vol 20 (02) ◽  
pp. 103-121 ◽  
Author(s):  
MOSTAFA I. SOLIMAN ◽  
ABDULMAJID F. Al-JUNAID

Technological advances in IC manufacturing provide us with the capability to integrate more and more functionality into a single chip. Today's modern processors have nearly one billion transistors on a single chip. With the increasing complexity of today's system, the designs have to be modeled at a high-level of abstraction before partitioning into hardware and software components for final implementation. This paper explains in detail the implementation and performance evaluation of a matrix processor called Mat-Core with SystemC (system level modeling language). Mat-Core is a research processor aiming at exploiting the increasingly number of transistors per IC to improve the performance of a wide range of applications. It extends a general-purpose scalar processor with a matrix unit. To hide memory latency, the extended matrix unit is decoupled into two components: address generation and data computation, which communicate through data queues. Like vector architectures, the data computation unit is organized in parallel lanes. However, on parallel lanes, Mat-Core can execute matrix-scalar, matrix-vector, and matrix-matrix instructions in addition to vector-scalar and vector-vector instructions. For controlling the execution of vector/matrix instructions on the matrix core, this paper extends the well known scoreboard technique. Furthermore, the performance of Mat-Core is evaluated on vector and matrix kernels. Our results show that the performance of four lanes Mat-Core with matrix registers of size 4 × 4 or 16 elements each, queues size of 10, start up time of 6 clock cycles, and memory latency of 10 clock cycles is about 0.94, 1.3, 2.3, 1.6, 2.3, and 5.5 FLOPs per clock cycle; achieved on scalar-vector multiplication, SAXPY, Givens, rank-1 update, vector-matrix multiplication, and matrix-matrix multiplication, respectively.


Author(s):  
Matias Javier Oliva ◽  
Pablo Andrés García ◽  
Enrique Mario Spinelli ◽  
Alejandro Luis Veiga

<span lang="EN-US">Real-time acquisition and processing of electroencephalographic signals have promising applications in the implementation of brain-computer interfaces. These devices allow the user to control a device without performing motor actions, and are usually made up of a biopotential acquisition stage and a personal computer (PC). This structure is very flexible and appropriate for research, but for final users it is necessary to migrate to an embedded system, eliminating the PC from the scheme. The strict real-time processing requirements of such systems justify the choice of a system on a chip field-programmable gate arrays (SoC-FPGA) for its implementation. This article proposes a platform for the acquisition and processing of electroencephalographic signals using this type of device, which combines the parallelism and speed capabilities of an FPGA with the simplicity of a general-purpose processor on a single chip. In this scheme, the FPGA is in charge of the real-time operation, acquiring and processing the signals, while the processor solves the high-level tasks, with the interconnection between processing elements solved by buses integrated into the chip. The proposed scheme was used to implement a brain-computer interface based on steady-state visual evoked potentials, which was used to command a speller. The first tests of the system show that a selection time of 5 seconds per command can be achieved. The time delay between the user’s selection and the system response has been estimated at 343 µs.</span>


2012 ◽  
Vol 21 (02) ◽  
pp. 1240008 ◽  
Author(s):  
SHENGYUE WANG ◽  
PEN-CHUNG YEW ◽  
ANTONIA ZHAI

As technology advances, microprocessors that integrate multiple cores on a single chip are becoming increasingly common. How to use these processors to improve the performance of a single program has been a challenge. For general-purpose applications, it is especially difficult to create efficient parallel execution due to the complex control flow and ambiguous data dependences. Thread-level speculation and transactional memory provide two hardware mechanisms that are able to optimistically parallelize potentially dependent threads. However, a compiler that performs detailed performance trade-off analysis is essential for generating efficient parallel programs for these hardwares. This compiler must be able to take into consideration the cost of intra-thread as well as inter-thread value communication. On the other hand, the ubiquitous existence of complex, input-dependent control flow and data dependence patterns in general-purpose applications makes it impossible to have one technique optimize all program patterns. In this paper, we propose three optimization techniques to improve the thread performance: (i) scheduling instruction and generating recovery code to reduce the critical forwarding path introduced by synchronizing memory resident values; (ii) identifying reduction variables and transforming the code the minimize the serializing execution; and (iii) dynamically merging consecutive iterations of a loop to avoid stalls due to unbalanced workload. Detailed evaluation of the proposed mechanism shows that each optimization technique improves a subset but none improve all of the SPEC2000 benchmarks. On average, the proposed optimizations improve the performance by 7% for the set of the SPEC2000 benchmarks that have already been optimized for register-resident value communication.


Author(s):  
Zainal Salam ◽  
Khosru Mohammad Salim

Artikel ini menerangkan penggunaan pengawal mikro serbaguna untuk menjana denyut–denyut modulasi lebar jalur untuk penyongsang tiga fasa. Kelebihan utama teknik ini adalah keringkasan perkakasan – hanya sebuah pengawal mikro dengan peralatan dalaman sahaja diperlukan. Hasilnya adalah sebuah sistem yang ringkas, murah dan dapat dipercayai. Setelah prototaip penyongsang menggunakan pengawal mikro Siemens 80C167 telah dibangunkan dan beberapa hasil ujian diberikan. Kata kunci: Pengawal mikro; penyongsong; denyut modulasi lebar jalur; elektronik kuasa. This paper describes the use of a general purpose microcontroller to generate the pulse width modulation (PWM) pulses for a three–phase inverter. The main feature of the work is the simplicity of the hardware – only a fixed point microcontroller with its associated internal peripheral is required. This result in an extremely simple, low-cost and reliable system. A laboratory inverter prototype using a Siemens 80C167 microcontroller is developed and typical results are presented. Key word: Microcontroller; inverter; pulse width modulation; power electronics, renewable energy.


1990 ◽  
Vol 2 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Gregory L. Heileman ◽  
George M. Papadourakis ◽  
Michael Georgiopoulos

A parallel hardware implementation of the associative memory neural network introduced by Hopfield is described. The design utilizes the Geometric Arithmetic Parallel Processor (GAPP), a commercially available single-chip VLSI general-purpose array processor consisting of 72 processing elements. The ability to cascade these chips allows large arrays of processors to be easily constructed and used to implement the Hopfield network. The memory requirements and processing times of such arrays are analyzed based on the number of nodes in the network and the number of exemplar patterns. Compared with other digital implementations, this design yields significant improvements in runtime performance and offers the capability of using large neural network associative memories in real-time applications.


Sign in / Sign up

Export Citation Format

Share Document