QUASI-PARTICLES IN CONFORMAL FIELD THEORIES FOR FRACTIONAL QUANTUM HALL SYSTEMS

Author(s):  
K. SCHOUTENS ◽  
R.A.J. VAN ELBURG
2000 ◽  
Vol 15 (30) ◽  
pp. 4857-4870 ◽  
Author(s):  
D. C. CABRA ◽  
E. FRADKIN ◽  
G. L. ROSSINI ◽  
F. A. SCHAPOSNIK

We propose an effective Lagrangian for the low energy theory of the Pfaffian states of the fractional quantum Hall effect in the bulk in terms of non-Abelian Chern–Simons (CS) actions. Our approach exploits the connection between the topological Chern–Simons theory and chiral conformal field theories. This construction can be used to describe a large class of non-Abelian FQH states.


2003 ◽  
Vol 18 (25) ◽  
pp. 4497-4591 ◽  
Author(s):  
MICHAEL A. I. FLOHR

These are notes of my lectures held at the first School & Workshop on Logarithmic Conformal Field Theory and its Applications, September 2001 in Tehran, Iran. These notes cover only selected parts of the by now quite extensive knowledge on logarithmic conformal field theories. In particular, I discuss the proper generalization of null vectors towards the logarithmic case, and how these can be used to compute correlation functions. My other main topic is modular invariance, where I discuss the problem of the generalization of characters in the case of indecomposable representations, a proposal for a Verlinde formula for fusion rules and identities relating the partition functions of logarithmic conformal field theories to such of well known ordinary conformal field theories. The two main topics are complemented by some remarks on ghost systems, the Haldane-Rezayi fractional quantum Hall state, and the relation of these two to the logarithmic c=-2 theory.


2004 ◽  
Vol 18 (27n29) ◽  
pp. 3871-3874 ◽  
Author(s):  
KAREL VÝBORNÝ ◽  
DANIELA PFANNKUCHE

Transitions between spin polarized and spin singlet incompressible ground state of quantum Hall systems at filling factor 2/3 are studied by means of exact diagonalization with eight electrons. We observe a stable exactly half–polarized state becoming the absolute ground state around the transition point. This might be a candidate for the anomaly observed during the transition in optical experiments. The state reacts strongly to magnetic inhomogeneities but it prefers stripe–like spin structures to formation of domains.


2015 ◽  
Vol 29 (12) ◽  
pp. 1550065 ◽  
Author(s):  
B. A. Friedman ◽  
G. C. Levine

The critical value of the mobility for which the ν = 5/2 quantum Hall effect is destroyed by short range disorder is determined from an earlier calculation of the entanglement entropy. The value μ = 2.0 ×106 cm 2/ Vs agrees well with experiment. This agreement is particularly significant in that there are no adjustable parameters. Entanglement entropy versus disorder strength for ν = 1/2, ν = 9/2 and ν = 7/3 is calculated. For ν = 1/2 there is no evidence for a transition for the disorder strengths considered; for ν = 9/2 there appears to be a stripe-liquid transition. For ν = 7/3 there again appears to be a transition at similar value of the disorder strength as the ν = 5/2 transition but there are stronger finite size effects.


2001 ◽  
Vol 9 (4) ◽  
pp. 701-708 ◽  
Author(s):  
John J. Quinn ◽  
Arkadiusz Wójs ◽  
Jennifer J. Quinn ◽  
Arthur T. Benjamin

1998 ◽  
Vol 12 (26) ◽  
pp. 2649-2707 ◽  
Author(s):  
Banasri Basu ◽  
P. Bandyopadhyay

We have analyzed here the recent development towards our understanding of the Integral and Fractional Quantum Hall effect. It has been pointed out that the chiral anomaly and Berry phase approach embraces in a unified way the whole spectrum of quantum Hall systems with their various characteristic features. This formalism also helps us to understand the edge states observed in Hall fluids. It is argued that Hall fluids with even denominator filling factor leads to the non-Abelian Berry phase.


Sign in / Sign up

Export Citation Format

Share Document