Study on the hot extrusion forming process of AZ31 magnesium alloy cylindrical shell

Author(s):  
Shao-Chun Wang ◽  
Xiao-Hui Zhang ◽  
Xiu-Li Hu ◽  
Zhi-Gang Cai ◽  
Bo Peng
2017 ◽  
Vol 23 (3) ◽  
pp. 222 ◽  
Author(s):  
Ondřej Hilšer ◽  
Stanislav Rusz ◽  
Wojciech Maziarz ◽  
Jan Dutkiewicz ◽  
Tomasz Tański ◽  
...  

<p>Equal channel angular pressing (ECAP) method was used for achieving very fine-grained structure and increased mechanical properties of AZ31 magnesium alloy. The experiments were focused on the, in the initial state, hot extruded alloy. ECAP process was realized at the temperature 250°C and following route Bc. It was found that combination of hot extrusion and ECAP leads to producing of material with significantly fine-grained structure and improves mechanical properties. Alloy structure after the fourth pass of ECAP tool with helix matrix 30° shows a fine-grained structure with average grain size of 2 µm to 3 µm and high disorientation between the grains. More experimental results are discussed in this article.</p>


2016 ◽  
Vol 61 (2) ◽  
pp. 1003-1008 ◽  
Author(s):  
A. Dziubińska ◽  
A. Gontarz ◽  
K. Dziedzic

AbstractThe paper reports a selection of numerical and experimental results of a new closed-die forging method for producing AZ31 magnesium alloy aircraft brackets with one rib. The numerical modelling of the new forming process was performed by the finite element method.The distributions of stresses, strains, temperature and forces were examined. The numerical results confirmed that the forgings produced by the new forming method are correct. For this reason, the new forming process was verified experimentally. The experimental results showed good agreement with the numerical results. The produced forgings of AZ31 magnesium alloy aircraft brackets with one rib were then subjected to qualitative tests.


2010 ◽  
Vol 654-656 ◽  
pp. 739-742 ◽  
Author(s):  
Kenichi Manabe ◽  
Toshiji Morishima ◽  
Yu Ogawa ◽  
Kazuo Tada ◽  
Tsutomu Murai ◽  
...  

In this study, non-uniform heating approach in warm T-joint forming process is attempted for the AZ31 magnesium alloy tube. For this purpose, finite element simulation is performed to analyze the appropriate temperature distribution. The validity of the finite element(FE) model of T-joint tube hydroforming(THF) is verified by comparing the FE simulation and experimental results. Using this FE model, appropriate temperature distribution was suggested. In addition, it was showed that the wall thickness could be more uniform by optimizing the temperature condition.


2010 ◽  
Vol 97-101 ◽  
pp. 75-80
Author(s):  
Hong Bo Li ◽  
Mei Lu ◽  
Jun Ting Luo

Both experimentation and calculation of the Yada model modulus of casting AZ31 magnesium alloy are provided in this paper. Based on revised Yada model, the microstructure simulation of precision forming inner gear is performed using Superform software. On the basisi of result analysis, the microstructure transformation of the casting magnesium alloy in the hot-forming process is forecasted in terms of revised Yada model.


2014 ◽  
Vol 1016 ◽  
pp. 75-79 ◽  
Author(s):  
Dong Hong Kim ◽  
Dae Hwan Yoon ◽  
Hao Yu ◽  
Dong Won Jung

AZ31 magnesium alloy sheets are usually performed at high temperatures of 200 to 250°C due to their unusual hexagonal close-packed structure and low ductility at room temperature. In this study, to predict the spring-back of AZ31 magnesium alloy sheets in a roll forming process subjected to high temperatures, so the spring-back phenomenon consider in various temperature using an explicit finite element code. Finally, the roll forming process for a magnesium alloy sheet at high temperatures was performed to verify the spring-back angle, which was then compared with the spring-back angle predictions of the FE simulation.


Author(s):  
Su-Hai Hsiang ◽  
Yi-Wei Lin

Magnesium alloy parts have the merits of low specific gravity, high specific strength, electromagnetic wave-proof shelter, and recyclability; therefore, it has been extensively applied to 3C and car industries. However, the processing and forming of magnesium is quite difficult to control due to magnesium’s hexagonal close-packed (HCP) structure, making the slipping face of itself less than the FCC material. Currently, common processing methods of magnesium alloys are die casting, semi-solid forming, and plastic forming. In the employment of a fixed-speed method for extrusion, the extruded sheet had serious defects in the forms of cracks on the surface. Hence, in this research, AZ31 magnesium alloy sheet metals were processed by hot extrusion using a variable speed method. The formability of AZ31 sheets under converging dies was investigated. Three converging dies with semi die angle of 20°, 30°, and 40° were used. Experiments were conducted and analyzed utilizing the Taguchi method. L9 orthogonal array was used to design the experiments under extrusion ratio of 35.9. Four important process parameters considered in this research are the heating temperature of the billet (320°C, 340°C and 360°C), the temperature of the container (300°C, 350°C and 400°C), the initial speed of extrusion (2mm/sec, 3mm/sec and 4mm/sec), and the lubricants (boron nitride, molybdenum disulphide and graphite) applied in the extrusion. The influences of these parameters to the extrusion load and the resulting mechanical properties were investigated. Moreover, the microstructure of the extruded sheets was observed to provide better insight of the formability. As a result, the optimal combinations of the process parameters were determined for the maximum tensile strength.


Sign in / Sign up

Export Citation Format

Share Document