Biostatistics ◽  
2020 ◽  
Author(s):  
M D Mahsin ◽  
Rob Deardon ◽  
Patrick Brown

Summary Infectious disease models can be of great use for understanding the underlying mechanisms that influence the spread of diseases and predicting future disease progression. Modeling has been increasingly used to evaluate the potential impact of different control measures and to guide public health policy decisions. In recent years, there has been rapid progress in developing spatio-temporal modeling of infectious diseases and an example of such recent developments is the discrete-time individual-level models (ILMs). These models are well developed and provide a common framework for modeling many disease systems; however, they assume the probability of disease transmission between two individuals depends only on their spatial separation and not on their spatial locations. In cases where spatial location itself is important for understanding the spread of emerging infectious diseases and identifying their causes, it would be beneficial to incorporate the effect of spatial location in the model. In this study, we thus generalize the ILMs to a new class of geographically dependent ILMs, to allow for the evaluation of the effect of spatially varying risk factors (e.g., education, social deprivation, environmental), as well as unobserved spatial structure, upon the transmission of infectious disease. Specifically, we consider a conditional autoregressive (CAR) model to capture the effects of unobserved spatially structured latent covariates or measurement error. This results in flexible infectious disease models that can be used for formulating etiological hypotheses and identifying geographical regions of unusually high risk to formulate preventive action. The reliability of these models is investigated on a combination of simulated epidemic data and Alberta seasonal influenza outbreak data ($2009$). This new class of models is fitted to data within a Bayesian statistical framework using Markov chain Monte Carlo methods.


2015 ◽  
Vol 11 (1) ◽  
pp. e1003968 ◽  
Author(s):  
Ioannis Andrianakis ◽  
Ian R. Vernon ◽  
Nicky McCreesh ◽  
Trevelyan J. McKinley ◽  
Jeremy E. Oakley ◽  
...  

2017 ◽  
Vol 4 (5) ◽  
pp. 160950 ◽  
Author(s):  
Cecilia Panigutti ◽  
Michele Tizzoni ◽  
Paolo Bajardi ◽  
Zbigniew Smoreda ◽  
Vittoria Colizza

The recent availability of large-scale call detail record data has substantially improved our ability of quantifying human travel patterns with broad applications in epidemiology. Notwithstanding a number of successful case studies, previous works have shown that using different mobility data sources, such as mobile phone data or census surveys, to parametrize infectious disease models can generate divergent outcomes. Thus, it remains unclear to what extent epidemic modelling results may vary when using different proxies for human movements. Here, we systematically compare 658 000 simulated outbreaks generated with a spatially structured epidemic model based on two different human mobility networks: a commuting network of France extracted from mobile phone data and another extracted from a census survey. We compare epidemic patterns originating from all the 329 possible outbreak seed locations and identify the structural network properties of the seeding nodes that best predict spatial and temporal epidemic patterns to be alike. We find that similarity of simulated epidemics is significantly correlated to connectivity, traffic and population size of the seeding nodes, suggesting that the adequacy of mobile phone data for infectious disease models becomes higher when epidemics spread between highly connected and heavily populated locations, such as large urban areas.


2012 ◽  
Vol 39 (5) ◽  
pp. 1139-1150 ◽  
Author(s):  
Rob Deardon ◽  
Babak Habibzadeh ◽  
Hau Yi Chung

2018 ◽  
Author(s):  
David Manheim

AbstractThe potential for an infectious disease outbreak that is much worse than those which have been observed in human history, whether engineered or natural, has been the focus of significant concern in biosecurity. Fundamental dynamics of disease spread make such outbreaks much less likely than they first appear. Here we present a slightly modified formulation of the typical SEIR model that illustrates these dynamics more clearly, and shows the unlikely cases where concern may still be warranted. This is then applied to an extreme version of proposed pandemic risk, multi-disease syndemics, to show that (absent much clearer reasons for concern) the suggested dangers are overstated.The models used in this paper are available here: https://github.com/davidmanheim/Infectious-Disease-Models


Sign in / Sign up

Export Citation Format

Share Document