An Optimized Support Vector Regression Using Whale Optimization for Long Term Wind Speed Forecasting

Author(s):  
Sarah Osama ◽  
Essam H. Houssein ◽  
Ashraf Darwish ◽  
Aboul Ella Hassanien ◽  
Aly A. Fahmy
2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Zhenhai Guo ◽  
Yao Dong ◽  
Jianzhou Wang ◽  
Haiyan Lu

Energy crisis has made it urgent to find alternative energy sources for sustainable energy supply; wind energy is one of the attractive alternatives. Within a wind energy system, the wind speed is one key parameter; accurately forecasting of wind speed can minimize the scheduling errors and in turn increase the reliability of the electric power grid and reduce the power market ancillary service costs. This paper proposes a new hybrid model for long-term wind speed forecasting based on the first definite season index method and the Autoregressive Moving Average (ARMA) models or the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) forecasting models. The forecasting errors are analyzed and compared with the ones obtained from the ARMA, GARCH model, and Support Vector Machine (SVM); the simulation process and results show that the developed method is simple and quite efficient for daily average wind speed forecasting of Hexi Corridor in China.


2014 ◽  
Vol 57 ◽  
pp. 1-11 ◽  
Author(s):  
Qinghua Hu ◽  
Shiguang Zhang ◽  
Zongxia Xie ◽  
Jusheng Mi ◽  
Jie Wan

2021 ◽  
Vol 7 ◽  
pp. e732
Author(s):  
Tao Wang

Background The planning and control of wind power production rely heavily on short-term wind speed forecasting. Due to the non-linearity and non-stationarity of wind, it is difficult to carry out accurate modeling and prediction through traditional wind speed forecasting models. Methods In the paper, we combine empirical mode decomposition (EMD), feature selection (FS), support vector regression (SVR) and cross-validated lasso (LassoCV) to develop a new wind speed forecasting model, aiming to improve the prediction performance of wind speed. EMD is used to extract the intrinsic mode functions (IMFs) from the original wind speed time series to eliminate the non-stationarity in the time series. FS and SVR are combined to predict the high-frequency IMF obtained by EMD. LassoCV is used to complete the prediction of low-frequency IMF and trend. Results Data collected from two wind stations in Michigan, USA are adopted to test the proposed combined model. Experimental results show that in multi-step wind speed forecasting, compared with the classic individual and traditional EMD-based combined models, the proposed model has better prediction performance. Conclusions Through the proposed combined model, the wind speed forecast can be effectively improved.


2016 ◽  
Vol 85 ◽  
pp. 790-809 ◽  
Author(s):  
G. Santamaría-Bonfil ◽  
A. Reyes-Ballesteros ◽  
C. Gershenson

2012 ◽  
Vol 512-515 ◽  
pp. 803-808
Author(s):  
Ji Long Tong ◽  
Zeng Bao Zhao ◽  
Wen Yu Zhang

This paper presents a new strategy in wind speed prediction based on AR model and wavelet transform.The model uses the adjacent data for short-term wind speed forecasting and the data of the same moment in earlier days for long-term wind speed prediction at that moment,taking the similarity of wind speed at the same moment every day into account.Using the new model to analyze the wind speed of An-xi,China in April,2010,this paper concludes that the model is effective for that the correlation coefficient between the predicted value and the original data is larger than 0.8 when the prediction is less than 48 hours;while the prediction time is long ahead (48-120h),the error is acceptable (within 40%),which demonstrates that the new method is a novel and good idea for prediction on wind speed.


Sign in / Sign up

Export Citation Format

Share Document