Noise model based ν-support vector regression with its application to short-term wind speed forecasting

2014 ◽  
Vol 57 ◽  
pp. 1-11 ◽  
Author(s):  
Qinghua Hu ◽  
Shiguang Zhang ◽  
Zongxia Xie ◽  
Jusheng Mi ◽  
Jie Wan
2021 ◽  
Vol 7 ◽  
pp. e732
Author(s):  
Tao Wang

Background The planning and control of wind power production rely heavily on short-term wind speed forecasting. Due to the non-linearity and non-stationarity of wind, it is difficult to carry out accurate modeling and prediction through traditional wind speed forecasting models. Methods In the paper, we combine empirical mode decomposition (EMD), feature selection (FS), support vector regression (SVR) and cross-validated lasso (LassoCV) to develop a new wind speed forecasting model, aiming to improve the prediction performance of wind speed. EMD is used to extract the intrinsic mode functions (IMFs) from the original wind speed time series to eliminate the non-stationarity in the time series. FS and SVR are combined to predict the high-frequency IMF obtained by EMD. LassoCV is used to complete the prediction of low-frequency IMF and trend. Results Data collected from two wind stations in Michigan, USA are adopted to test the proposed combined model. Experimental results show that in multi-step wind speed forecasting, compared with the classic individual and traditional EMD-based combined models, the proposed model has better prediction performance. Conclusions Through the proposed combined model, the wind speed forecast can be effectively improved.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Sizhou Sun ◽  
Jingqi Fu ◽  
Feng Zhu ◽  
Nan Xiong

The aims of this study contribute to a new hybrid model by combining ensemble empirical mode decomposition (EEMD) with multikernel function least square support vector machine (MKLSSVM) optimized by hybrid gravitation search algorithm (HGSA) for short-term wind speed prediction. In the forecasting process, EEMD is adopted to make the original wind speed data decomposed into intrinsic mode functions (IMFs) and one residual firstly. Then, partial autocorrelation function (PACF) is applied to identify the correlation between the corresponding decomposed components. Subsequently, the MKLSSVM using multikernel function of radial basis function (RBF) and polynomial (Poly) kernel function by weight coefficient is exploited as core forecasting engine to make the short-term wind speed prediction. To improve the regression performance, the binary-value GSA (BGSA) in HGSA is utilized as feature selection approach to remove the ineffective candidates and reconstruct the most relevant feature input-matrix for the forecasting engine, while real-value GSA (RGSA) makes the parameter combination optimization of MKLSSVM model. In the end, these respective decomposed subseries forecasting results are combined into the final forecasting values by aggregate calculation. Numerical results and comparable analysis illustrate the excellent performance of the EEMD-HGSA-MKLSSVM model when applied in the short-term wind speed forecasting.


2017 ◽  
Vol 2017 ◽  
pp. 1-22 ◽  
Author(s):  
Aiqing Kang ◽  
Qingxiong Tan ◽  
Xiaohui Yuan ◽  
Xiaohui Lei ◽  
Yanbin Yuan

Hybrid Ensemble Empirical Mode Decomposition (EEMD) and Least Square Support Vector Machine (LSSVM) is proposed to improve short-term wind speed forecasting precision. The EEMD is firstly utilized to decompose the original wind speed time series into a set of subseries. Then the LSSVM models are established to forecast these subseries. Partial autocorrelation function is adopted to analyze the inner relationships between the historical wind speed series in order to determine input variables of LSSVM models for prediction of every subseries. Finally, the superposition principle is employed to sum the predicted values of every subseries as the final wind speed prediction. The performance of hybrid model is evaluated based on six metrics. Compared with LSSVM, Back Propagation Neural Networks (BP), Auto-Regressive Integrated Moving Average (ARIMA), combination of Empirical Mode Decomposition (EMD) with LSSVM, and hybrid EEMD with ARIMA models, the wind speed forecasting results show that the proposed hybrid model outperforms these models in terms of six metrics. Furthermore, the scatter diagrams of predicted versus actual wind speed and histograms of prediction errors are presented to verify the superiority of the hybrid model in short-term wind speed prediction.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Chen Wang ◽  
Jie Wu ◽  
Jianzhou Wang ◽  
Zhongjin Hu

Power systems could be at risk when the power-grid collapse accident occurs. As a clean and renewable resource, wind energy plays an increasingly vital role in reducing air pollution and wind power generation becomes an important way to produce electrical power. Therefore, accurate wind power and wind speed forecasting are in need. In this research, a novel short-term wind speed forecasting portfolio has been proposed using the following three procedures: (I) data preprocessing: apart from the regular normalization preprocessing, the data are preprocessed through empirical model decomposition (EMD), which reduces the effect of noise on the wind speed data; (II) artificially intelligent parameter optimization introduction: the unknown parameters in the support vector machine (SVM) model are optimized by the cuckoo search (CS) algorithm; (III) parameter optimization approach modification: an improved parameter optimization approach, called the SDCS model, based on the CS algorithm and the steepest descent (SD) method is proposed. The comparison results show that the simple and effective portfolio EMD-SDCS-SVM produces promising predictions and has better performance than the individual forecasting components, with very small root mean squared errors and mean absolute percentage errors.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jianzhou Wang ◽  
Qingping Zhou ◽  
Haiyan Jiang ◽  
Ru Hou

This paper develops an effectively intelligent model to forecast short-term wind speed series. A hybrid forecasting technique is proposed based on recurrence plot (RP) and optimized support vector regression (SVR). Wind caused by the interaction of meteorological systems makes itself extremely unsteady and difficult to forecast. To understand the wind system, the wind speed series is analyzed using RP. Then, the SVR model is employed to forecast wind speed, in which the input variables are selected by RP, and two crucial parameters, including the penalties factor and gamma of the kernel function RBF, are optimized by various optimization algorithms. Those optimized algorithms are genetic algorithm (GA), particle swarm optimization algorithm (PSO), and cuckoo optimization algorithm (COA). Finally, the optimized SVR models, including COA-SVR, PSO-SVR, and GA-SVR, are evaluated based on some criteria and a hypothesis test. The experimental results show that (1) analysis of RP reveals that wind speed has short-term predictability on a short-term time scale, (2) the performance of the COA-SVR model is superior to that of the PSO-SVR and GA-SVR methods, especially for the jumping samplings, and (3) the COA-SVR method is statistically robust in multi-step-ahead prediction and can be applied to practical wind farm applications.


Sign in / Sign up

Export Citation Format

Share Document