Transcriptional regulation of ADE2 and PUT2 genes in Kluyveromyces lactis

Author(s):  
G. Ruiz Moran ◽  
M. Lamas Maceiras ◽  
A.M. Rodriguez Torres
1996 ◽  
Vol 20 (4) ◽  
pp. 765-772 ◽  
Author(s):  
C. Prior ◽  
L. Tizzani ◽  
H. Fukuhara ◽  
M. Wésolowski-Louvel

2001 ◽  
Vol 39 (5-6) ◽  
pp. 311-318 ◽  
Author(s):  
Janynke Brons ◽  
Dryla Agnieszka ◽  
Esther Plüger ◽  
Thessa Vinkenvleugel ◽  
Nadine Hornig ◽  
...  

2004 ◽  
Vol 46 (3) ◽  
Author(s):  
Laura N��ez ◽  
Isabel Gonz�lez-Siso ◽  
Manuel Becerra ◽  
M.Esperanza Cerd�n

1981 ◽  
Vol 1 (7) ◽  
pp. 629-634 ◽  
Author(s):  
L R Lacy ◽  
R C Dickson

We examined the molecular basis for beta-D-galactosidase (EC 3.2.1.23) induction in the yeast Kluyveromyces lactis. The protein synthesis inhibitor anisomycin effectively blocked both protein synthesis and enzyme induction by lactose. Further, hybridization analysis with the cloned beta-galactosidase gene indicated coordinate increases in the concentration of beta-galactosidase messenger ribonucleic acid and enzyme activity. The half-life of beta-galactosidase messenger ribonucleic acid was the same (4.8 +/- 0.4 min) when measured both before and at succeeding times during enzyme induction. These results strongly support the hypothesis that expression of the yeast beta-galactosidase gene is subject to transcriptional regulation.


2004 ◽  
Vol 50 (8) ◽  
pp. 645-652 ◽  
Author(s):  
Silvia M Díaz Prado ◽  
M Esperanza Cerdán ◽  
M Isabel González Siso

Cloning and transcriptional regulation of the KlFBA1 gene that codes for the class II fructose-1,6-bisphosphate aldolase of the yeast Kluyveromyces lactis are described. KlFBA1 mRNA diminishes transiently during the shift from hypoxic to fully aerobic conditions and increases in the reversal shift. This regulation is mediated by heme since expression was higher in a mutant defective in heme biosynthesis. KlFBA1 transcription is not induced by calcium-shortage, low temperature, or at stationary phase. These data suggest that KlFBA1 plays a role in the balance between oxidative and fermentative metabolism and that this gene is differentially regulated in K. lactis and Saccharomyces cerevisiae, i.e., a respiratory vs. fermentative yeast.Key words: FBA1, fructose-1,6-bisphosphate aldolase, Kluyveromyces, transcriptional regulation, yeast.


1981 ◽  
Vol 1 (7) ◽  
pp. 629-634
Author(s):  
L R Lacy ◽  
R C Dickson

We examined the molecular basis for beta-D-galactosidase (EC 3.2.1.23) induction in the yeast Kluyveromyces lactis. The protein synthesis inhibitor anisomycin effectively blocked both protein synthesis and enzyme induction by lactose. Further, hybridization analysis with the cloned beta-galactosidase gene indicated coordinate increases in the concentration of beta-galactosidase messenger ribonucleic acid and enzyme activity. The half-life of beta-galactosidase messenger ribonucleic acid was the same (4.8 +/- 0.4 min) when measured both before and at succeeding times during enzyme induction. These results strongly support the hypothesis that expression of the yeast beta-galactosidase gene is subject to transcriptional regulation.


2010 ◽  
Vol 34 (8) ◽  
pp. S27-S27
Author(s):  
Jianqi Cui ◽  
Xiuying Pei ◽  
Qian Zhang ◽  
Bassel E. Sawaya ◽  
Xiaohong Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document