Distinct transcriptional regulation of a gene coding for a mitochondrial protein in the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis despite similar promoter structures

1995 ◽  
Vol 17 (5) ◽  
pp. 813-824 ◽  
Author(s):  
Wietse Mulder ◽  
Inge H.J.M. Scholten ◽  
Leslie A. Grivell
2004 ◽  
Vol 50 (8) ◽  
pp. 645-652 ◽  
Author(s):  
Silvia M Díaz Prado ◽  
M Esperanza Cerdán ◽  
M Isabel González Siso

Cloning and transcriptional regulation of the KlFBA1 gene that codes for the class II fructose-1,6-bisphosphate aldolase of the yeast Kluyveromyces lactis are described. KlFBA1 mRNA diminishes transiently during the shift from hypoxic to fully aerobic conditions and increases in the reversal shift. This regulation is mediated by heme since expression was higher in a mutant defective in heme biosynthesis. KlFBA1 transcription is not induced by calcium-shortage, low temperature, or at stationary phase. These data suggest that KlFBA1 plays a role in the balance between oxidative and fermentative metabolism and that this gene is differentially regulated in K. lactis and Saccharomyces cerevisiae, i.e., a respiratory vs. fermentative yeast.Key words: FBA1, fructose-1,6-bisphosphate aldolase, Kluyveromyces, transcriptional regulation, yeast.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Simon Arhar ◽  
Gabriela Gogg-Fassolter ◽  
Mojca Ogrizović ◽  
Klavdija Pačnik ◽  
Katharina Schwaiger ◽  
...  

Abstract Background Fatty acid-based substances play an important role in many products, from food supplements to pharmaceutical products and biofuels. The production of fatty acids, mainly in their esterified form as triacylglycerol (TAG), has been intensively studied in oleaginous yeasts, whereas much less effort has been invested into non-oleaginous species. In the present work, we engineered the model yeast Saccharomyces cerevisiae, which is commonly regarded as non-oleaginous, for the storage of high amounts of TAG, comparable to the contents achieved in oleaginous yeasts. Results We investigated the effects of several mutations with regard to increased TAG accumulation and identified six of them as important for this phenotype: a point mutation in the acetyl-CoA carboxylase Acc1p, overexpression of the diacylglycerol acyltransferase Dga1p, deletions of genes coding for enzymes involved in the competing pathways glycogen and steryl ester synthesis and TAG hydrolysis, and a deletion of CKB1, the gene coding for one of the regulatory subunits of casein kinase 2. With the combination of these mutations in a S. cerevisiae strain with a relatively high neutral lipid level already in the non-engineered state, we achieved a TAG content of 65% in the dry biomass. High TAG levels were not only obtained under conditions that favor lipid accumulation, but also in defined standard carbon-limited media. Conclusions Baker's yeast, which is usually regarded as inefficient in the storage of TAG, can be converted into a highly oleaginous strain that could be useful in processes aiming at the synthesis of fatty acid-based products. This work emphasizes the importance of strain selection in combination with metabolic engineering to obtain high product levels.


1996 ◽  
Vol 20 (4) ◽  
pp. 765-772 ◽  
Author(s):  
C. Prior ◽  
L. Tizzani ◽  
H. Fukuhara ◽  
M. Wésolowski-Louvel

2005 ◽  
Vol 69 (4) ◽  
pp. 428-439 ◽  
Author(s):  
Alessandra Piscitelli ◽  
Paola Giardina ◽  
Cristina Mazzoni ◽  
Giovanni Sannia

Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 147-154 ◽  
Author(s):  
Douglas J Kominsky ◽  
Peter E Thorsness

Abstract Organisms that can grow without mitochondrial DNA are referred to as “petite-positive” and those that are inviable in the absence of mitochondrial DNA are termed “petite-negative.” The petite-positive yeast Saccharomyces cerevisiae can be converted to a petite-negative yeast by inactivation of Yme1p, an ATP- and metal-dependent protease associated with the inner mitochondrial membrane. Suppression of this yme1 phenotype can occur by virtue of dominant mutations in the α- and γ-subunits of mitochondrial ATP synthase. These mutations are similar or identical to those occurring in the same subunits of the same enzyme that converts the petite-negative yeast Kluyveromyces lactis to petite-positive. Expression of YME1 in the petite-negative yeast Schizosaccharomyces pombe converts this yeast to petite-positive. No sequence closely related to YME1 was found by DNA-blot hybridization to S. pombe or K. lactis genomic DNA, and no antigenically related proteins were found in mitochondrial extracts of S. pombe probed with antisera directed against Yme1p. Mutations that block the formation of the F1 component of mitochondrial ATP synthase are also petite-negative. Thus, the F1 complex has an essential activity in cells lacking mitochondrial DNA and Yme1p can mediate that activity, even in heterologous systems.


Genetics ◽  
2001 ◽  
Vol 159 (3) ◽  
pp. 929-938
Author(s):  
G D Clark-Walker ◽  
X J Chen

Abstract Loss of mtDNA or mitochondrial protein synthesis cannot be tolerated by wild-type Kluyveromyces lactis. The mitochondrial function responsible for ρ0-lethality has been identified by disruption of nuclear genes encoding electron transport and F0-ATP synthase components of oxidative phosphorylation. Sporulation of diploid strains heterozygous for disruptions in genes for the two components of oxidative phosphorylation results in the formation of nonviable spores inferred to contain both disruptions. Lethality of spores is thought to result from absence of a transmembrane potential, ΔΨ, across the mitochondrial inner membrane due to lack of proton pumping by the electron transport chain or reversal of F1F0-ATP synthase. Synergistic lethality, caused by disruption of nuclear genes, or ρ0-lethality can be suppressed by the atp2.1 mutation in the β-subunit of F1-ATPase. Suppression is viewed as occurring by an increased hydrolysis of ATP by mutant F1, allowing sufficient electrogenic exchange by the translocase of ADP in the matrix for ATP in the cytosol to maintain ΔΨ. In addition, lethality of haploid strains with a disruption of AAC encoding the ADP/ATP translocase can be suppressed by atp2.1. In this case suppression is considered to occur by mutant F1 acting in the forward direction to partially uncouple ATP production, thereby stimulating respiration and relieving detrimental hyperpolarization of the inner membrane. Participation of the ADP/ATP translocase in suppression of ρ0-lethality is supported by the observation that disruption of AAC abolishes suppressor activity of atp2.1.


1994 ◽  
Vol 14 (4) ◽  
pp. 2822-2835
Author(s):  
C Linder ◽  
F Thoma

Histone H1 is proposed to serve a structural role in nucleosomes and chromatin fibers, to affect the spacing of nucleosomes, and to act as a general repressor of transcription. To test these hypotheses, a gene coding for a sea urchin histone H1 was expressed from the inducible GAL1 promoter in Saccharomyces cerevisiae by use of a YEp vector for high expression levels (strain YCL7) and a centromere vector for low expression levels (strain YCL1). The H1 protein was identified by its inducibility in galactose, its apparent molecular weight, and its solubility in 5% perchloric acid. When YCL7 was shifted from glucose to galactose for more than 40 h to achieve maximal levels of H1, H1 could be copurified in approximately stoichiometric amounts with core histones of Nonidet P-40-washed nuclei and with soluble chromatin fractionated on sucrose gradients. While S. cerevisiae tolerated the expression of low levels of H1 in YCL1 without an obvious phenotype, the expression of high levels of H1 correlated with greatly reduced survival, inhibition of growth, and increased plasmid loss but no obvious change in the nucleosomal repeat length. After an initial induction, RNA levels for GAL1 and H1 were drastically reduced, suggesting that H1 acts by the repression of galactose-induced genes. Similar effects, but to a lower extent, were observed when the C-terminal tail of H1 was expressed.


2014 ◽  
Vol 42 (6) ◽  
pp. 1715-1719 ◽  
Author(s):  
Carlos Gancedo ◽  
Carmen-Lisset Flores ◽  
Juana M. Gancedo

The present article addresses the possibilities offered by yeasts to study the problem of the evolution of moonlighting proteins. It focuses on data available on hexokinase from Saccharomyces cerevisiae that moonlights in catabolite repression and on galactokinase from Kluyveromyces lactis that moonlights controlling the induction of the GAL genes. Possible experimental approaches to studying the evolution of moonlighting hexose kinases are suggested.


Sign in / Sign up

Export Citation Format

Share Document