fermentative metabolism
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 18)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Vol 17 (8) ◽  
pp. e1009379
Author(s):  
Cortney R. Halsey ◽  
Rochelle C. Glover ◽  
Maureen K. Thomason ◽  
Michelle L. Reniere

The Gram-positive bacterium Listeria monocytogenes is the causative agent of the foodborne disease listeriosis, one of the deadliest bacterial infections known. In order to cause disease, L. monocytogenes must properly coordinate its metabolic and virulence programs in response to rapidly changing environments within the host. However, the mechanisms by which L. monocytogenes senses and adapts to the many stressors encountered as it transits through the gastrointestinal (GI) tract and disseminates to peripheral organs are not well understood. In this study, we investigated the role of the redox-responsive transcriptional regulator Rex in L. monocytogenes growth and pathogenesis. Rex is a conserved canonical transcriptional repressor that monitors the intracellular redox state of the cell by sensing the ratio of reduced and oxidized nicotinamide adenine dinucleotides (NADH and NAD+, respectively). Here, we demonstrated that L. monocytogenes Rex represses fermentative metabolism and is therefore required for optimal growth in the presence of oxygen. We also show that in vitro, Rex represses the production of virulence factors required for survival and invasion of the GI tract, as a strain lacking rex was more resistant to acidified bile and invaded host cells better than wt. Consistent with these results, Rex was dispensable for colonizing the GI tract and disseminating to peripheral organs in an oral listeriosis model of infection. However, Rex-dependent regulation was required for colonizing the spleen and liver, and L. monocytogenes lacking the Rex repressor were nearly sterilized from the gallbladder. Taken together, these results demonstrated that Rex functions as a repressor of fermentative metabolism and suggests a role for Rex-dependent regulation in L. monocytogenes pathogenesis. Importantly, the gallbladder is the bacterial reservoir during listeriosis, and our data suggest redox sensing and Rex-dependent regulation are necessary for bacterial survival and replication in this organ.


2021 ◽  
Vol 36 (1) ◽  
pp. 10-16
Author(s):  
Ricardo Figueira ◽  
Lucas Felipe Dos Ouros ◽  
Isabela Penteriche De Oliveira ◽  
Thalia Lee Lopes De Andrade ◽  
Waldemar Gastoni Venturini Filho

QUANTIFICAÇÃO DO METABOLISMO RESPIROFERMENTATIVO DE LEVEDURAS DE CERVEJA, VINHO E PÃO POR MÉTODO ESTEQUIOMÉTRICO   RICARDO FIGUEIRA1, LUCAS FELIPE DOS OUROS1, ISABELA PENTERICHE DE OLIVEIRA1, THALIA LEE LOPES DE ANDRADE1, WALDEMAR GASTONI VENTURINI FILHO1   1Departamento de Produção Vegetal/Área Horticultura, Faculdade de Ciências Agronômicas, UNESP. Av. Universitária, 3780 - Altos do Paraíso, CEP 18610-034, Botucatu, SP, Brasil. [email protected]; [email protected]; [email protected]; [email protected]; [email protected]   RESUMO: A levedura alcoólica apresenta metabolismo respirofermentativo, respirando e fermentando simultaneamente. É possível mensurar o metabolismo fermentativo e respiratório de uma levedura alcoólica, conhecendo a quantidade de etanol formado na fermentação e de gás carbônico proveniente dos processos de respiração e fermentação. O objetivo deste trabalho foi calcular a taxa respiratória e fermentativa de diferentes cepas de levedura alcoólica por meio de método estequiométrico. Foram utilizadas cinco diferentes cepas de leveduras (panificação, cervejeira de alta fermentação (ale), cervejeira de baixa fermentação (lager), vinho tinto e vinho branco). O meio de cultivo foi mosto de cana de açúcar (15 °Brix). A fermentação transcorreu durante 8 horas, na temperatura ambiente, em fermentador aberto. A levedura cervejeira de alta fermentação e de panificação apresentaram as maiores taxas respiratórias (19,17% e 19,12%), as leveduras de vinho branco e cervejeira de baixa fermentação tiveram as maiores taxas fermentativas (90,48% e 89,67%), a levedura cervejeira de baixa fermentação produziu a maior quantidade de etanol (7,57%) e a levedura de panificação apresentou maior capacidade metabólica (131,59 g de sacarose consumidos).   Palavras-chave: fermentação, respiração, Saccharomyces cerevisiae.   QUANTIFICATION OF RESPIRO-FERMENTATIVE METABOLISM OF BEER, WINE AND BREAD YIELD BY ESTEQUIOMETRIC METHOD   ABSTRACT: The alcoholic yeast can breathe and ferment simultaneously, called respiro-fermentative metabolism.  Yeast’s respiration and fermentation metabolism can be measured considering the amount of ethanol produced in the fermentation process and the carbon dioxide produced in both respiration and fermentation processes. This research focused on calculating the respiration and fermentation rates of five alcoholic yeast strains (baker’s, beer top-fermenting (ale), beer bottom fermenting (lager), red wine and white wine) from the stoichiometry. Sugar cane must (15 °Brix) was used as growth medium. Fermentation was performed in an open vessel at room temperature. A sample was taken hourly, and the fermentation process ended after 8 h. Beer top-fermenting yeast and baker’s yeast resulted in higher respiration rates (19.17% and 19.12%), while white wine yeast and bottom-fermenting yeast resulted in higher fermentation rates (90.48% and 89.67%). Bottom-fermenting yeast produced higher amount of ethanol (7.57%) and baker’s yeast presented higher metabolic activity (131.59 g of sucrose consumed).   Keywords: fermentation, respiration, Saccharomyces cerevisiae.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 819
Author(s):  
Catherine Duport ◽  
Jean-Paul Madeira ◽  
Mahsa Farjad ◽  
Béatrice Alpha-Bazin ◽  
Jean Armengaud

Reversible oxidation of methionine to methionine sulfoxide (Met(O)) is a common posttranslational modification occurring on proteins in all organisms under oxic conditions. Protein-bound Met(O) is reduced by methionine sulfoxide reductases, which thus play a significant antioxidant role. The facultative anaerobe Bacillus cereus produces two methionine sulfoxide reductases: MsrA and MsrAB. MsrAB has been shown to play a crucial physiological role under oxic conditions, but little is known about the role of MsrA. Here, we examined the antioxidant role of both MsrAB and MrsA under fermentative anoxic conditions, which are generally reported to elicit little endogenous oxidant stress. We created single- and double-mutant Δmsr strains. Compared to the wild-type and ΔmsrAB mutant, single- (ΔmsrA) and double- (ΔmsrAΔmsrAB) mutants accumulated higher levels of Met(O) proteins, and their cellular and extracellular Met(O) proteomes were altered. The growth capacity and motility of mutant strains was limited, and their energy metabolism was altered. MsrA therefore appears to play a major physiological role compared to MsrAB, placing methionine sulfoxides at the center of the B. cereus antioxidant system under anoxic fermentative conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diana Hernández-Oaxaca ◽  
Rafael López-Sánchez ◽  
Luis Lozano ◽  
Carmen Wacher-Rodarte ◽  
Lorenzo Segovia ◽  
...  

The genus Weissella is composed of a group of Gram-positive facultative anaerobe bacteria with fermentative metabolism. Strains of this genus have been isolated from various ecological niches, including a wide variety of fermented cereal foods. The present study aimed to determine the relative abundance and fermentation capabilities of Weissella species isolated from pozol, a traditional maya product made of lime-cooked (nixtamalized) fermented maize. We sequenced the V3-V4 regions of 16S rDNA; Weissella was detected early in the fermentation process and reached its highest relative abundance (3.89%) after 3 h of culture. In addition, we evaluated five Weissella strains previously isolated from pozol but reported as non-amylolytic, to define alternative carbon sources such as xylan, xylooligosaccharides, and sucrose. While no growth was observed on birch xylan, growth did occur on xylooligosaccharides and sucrose. Strains WcL17 and WCP-3A were selected for genomic sequencing, as the former shows efficient growth on xylooligosaccharides and the latter displays high glycosyltransferase (GTF) activity. Genomes of both strains were assembled and recorded, with a total of 2.3 Mb in 30 contigs for WcL17 and 2.2 Mb in 45 contigs for WCP-3a. Both strains were taxonomically assigned to Weissella confusa and genomic analyses were performed to evaluate the gene products encoding active carbohydrate enzymes (CAZy). Both strains have the gene content needed to metabolize sucrose, hemicellulose, cellulose, and starch residues, all available in pozol. Our results suggest that the range of secondary enzymatic activity in Weissella confusa strains confer them with wide capabilities to participate in fermentative processes of natural products with heterogeneous carbon sources.


2021 ◽  
Author(s):  
Cortney R. Halsey ◽  
Maureen K. Thomason ◽  
Rochelle C. Glover ◽  
Michelle L. Reniere

ABSTRACTThe Gram-positive bacterium Listeria monocytogenes is the causative agent of the foodborne disease listeriosis, one of the deadliest bacterial infections known. In order to cause disease, L. monocytogenes must properly coordinate its metabolic and virulence programs in response to rapidly changing environments within the host. However, the mechanisms by which L. monocytogenes senses and adapts to the many stressors encountered as it transits through the gastrointestinal (GI) tract and disseminates to peripheral organs are not well understood. In this study, we investigated the role of the redox-responsive transcriptional regulator Rex in L. monocytogenes growth and pathogenesis. Rex is a conserved canonical transcriptional repressor that monitors the intracellular redox state of the cell by sensing the ratio of reduced and oxidized nicotinamide adenine dinucleotides (NADH and NAD+, respectively). Here, we demonstrated that L. monocytogenes Rex represses fermentative metabolism and is therefore required for optimal growth in the presence of oxygen. We also show that Rex represses the production of virulence factors required for survival and invasion of the GI tract, as a strain lacking rex was more resistant to acidified bile and invaded host cells better than wt. Consistent with these results, Rex was dispensable for colonizing the GI tract and disseminating to peripheral organs in an oral listeriosis model of infection. However, Rex-dependent regulation was required for colonizing the spleen and liver, and L. monocytogenes lacking the Rex repressor were nearly sterilized from the gallbladder. Taken together, these results demonstrated that Rex functions as a repressor of fermentative metabolism and suggests a role for Rex-dependent regulation in L. monocytogenes pathogenesis. Importantly, the gallbladder is the bacterial reservoir during listeriosis, and our data suggest redox sensing and Rex-dependent regulation are necessary for bacterial survival and replication in this organ.AUTHOR SUMMARYListeriosis is a foodborne illness caused by Listeria monocytogenes and is one of the deadliest bacterial infections known, with a mortality rate of up to 30%. Following ingestion of contaminated food, L. monocytogenes disseminates from the gastrointestinal (GI) tract to peripheral organs, including the spleen, liver, and gallbladder. In this work, we investigated the role of the global redox-responsive regulator Rex in L. monocytogenes growth and pathogenesis. We demonstrated that Rex derepression coordinates expression of genes necessary in the GI tract during infection, including fermentative metabolism, bile resistance, and invasion of host cells. Accordingly, Rex was dispensable for colonizing the GI tract of mice during an oral listeriosis infection. Interestingly, Rex-dependent regulation was required for bacterial replication in the spleen, liver, and gallbladder. Taken together, our results demonstrate that Rex-mediated redox sensing and transcriptional regulation are important for L. monocytogenes metabolic adaptation and virulence.


Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Maria Carpena ◽  
Maria Fraga-Corral ◽  
Paz Otero ◽  
Raquel A. Nogueira ◽  
Paula Garcia-Oliveira ◽  
...  

Aroma profile is one of the main features for the acceptance of wine. Yeasts and bacteria are the responsible organisms to carry out both, alcoholic and malolactic fermentation. Alcoholic fermentation is in turn, responsible for transforming grape juice into wine and providing secondary aromas. Secondary aroma can be influenced by different factors; however, the influence of the microorganisms is one of the main agents affecting final wine aroma profile. Saccharomyces cerevisiae has historically been the most used yeast for winemaking process for its specific characteristics: high fermentative metabolism and kinetics, low acetic acid production, resistance to high levels of sugar, ethanol, sulfur dioxide and also, the production of pleasant aromatic compounds. Nevertheless, in the last years, the use of non-saccharomyces yeasts has been progressively growing according to their capacity to enhance aroma complexity and interact with S. cerevisiae, especially in mixed cultures. Hence, this review article is aimed at associating the main secondary aroma compounds present in wine with the microorganisms involved in the spontaneous and guided fermentations, as well as an approach to the strain variability of species, the genetic modifications that can occur and their relevance to wine aroma construction.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Irene Ventura ◽  
Luca Brunello ◽  
Sergio Iacopino ◽  
Maria Cristina Valeri ◽  
Giacomo Novi ◽  
...  

Abstract Alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) are key to the establishment of the fermentative metabolism in plants during oxygen shortage. Most of the evidence that both ADH and PDC are required for plant tolerance to hypoxia comes from experiments performed by limiting oxygen in the environment, such as by exposing plants to gaseous hypoxia or to waterlogging or submergence. However, recent experiments have shown that hypoxic niches might exist in plants grown in aerobic conditions. Here, we investigated the importance of ADH and PDC for plant growth and development under aerobic conditions, long-term waterlogging and short-term submergence. Data were collected after optimizing the software associated with a commercially-available phenotyping instrument, to circumvent problems in separation of plants and background pixels based on colour features, which is not applicable for low-oxygen stressed plants due to the low colour contrast of leaves with the brownish soil. The results showed that the growth penalty associated with the lack of functional ADH1 or both PDC1 and PDC2 is greater under aerobic conditions than in hypoxia, highlighting the importance of fermentative metabolism in plants grown under normal, aerobic conditions.


Sign in / Sign up

Export Citation Format

Share Document