scholarly journals APPLICATION OF A SECOND ORDER VSC TO NONLINEAR SYSTEMS IN MULTI-INPUT PARAMETRIC-PURE-FEEDBACK FORM

Author(s):  
A. FERRARA ◽  
L. GIACOMINI
1999 ◽  
Vol 121 (1) ◽  
pp. 48-57 ◽  
Author(s):  
I. Egemen Tezcan ◽  
Tamer Bas¸ar

We present a systematic procedure for designing H∞-optimal adaptive controllers for a class of single-input single-output parametric strict-feedback nonlinear systems that are in the output-feedback form. The uncertain nonlinear system is minimum phase with a known relative degree and known sign of the high-frequency gain. We use soft projection on the parameter estimates to keep them bounded in the absence of persistent excitations. The objective is to obtain disturbance attenuating output-feedback controllers which will track a smooth bounded trajectory and keep all closed-loop signals bounded in the presence of exogenous disturbances. Two recent papers (Pan and Bas¸ar, 1996a; Marino and Tomei, 1995) addressed a similar problem with full state information, using two different approaches, and obtained asymptotically tracking and disturbance-attenuating adaptive controllers. Here, we extend these results to the output measurement case for a class of minimum phase nonlinear systems where the nonlinearities depend only on the measured output. It is shown that arbitrarily small disturbance attenuation levels can be obtained at the expense of increased control effort. The backstepping methodology, cost-to-come function based H∞ -filtering and singular perturbations analysis constitute the framework of our robust adaptive control design scheme.


1970 ◽  
Vol 30 ◽  
pp. 59-75
Author(s):  
M Alhaz Uddin ◽  
M Abdus Sattar

 In this paper, the second order approximate solution of a general second order nonlinear ordinary differential system, modeling damped oscillatory process is considered. The new analytical technique based on the work of He’s homotopy perturbation method is developed to find the periodic solution of a second order ordinary nonlinear differential system with damping effects. Usually the second or higher order approximate solutions are able to give better results than the first order approximate solutions. The results show that the analytical approximate solutions obtained by homotopy perturbation method are uniformly valid on the whole solutions domain and they are suitable not only for strongly nonlinear systems, but also for weakly nonlinear systems. Another advantage of this new analytical technique is that it also works for strongly damped, weakly damped and undamped systems. Figures are provided to show the comparison between the analytical and the numerical solutions. Keywords: Homotopy perturbation method; damped oscillation; nonlinear equation; strong nonlinearity. GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 30 (2010) 59-75  DOI: http://dx.doi.org/10.3329/ganit.v30i0.8504


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 15170-15177 ◽  
Author(s):  
Jianping Cai ◽  
Jun Wan ◽  
Haoyi Que ◽  
Qingping Zhou ◽  
Lujuan Shen

Sign in / Sign up

Export Citation Format

Share Document