VERTEX OPERATOR REALIZATION OF JACK SYMMETRIC FUNCTIONS

Author(s):  
TOMMY WUXING CAI ◽  
NAIHUAN JING
10.37236/1383 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Mike Zabrocki

The two parameter family of coefficients $K_{\lambda \mu}(q,t)$ introduced by Macdonald are conjectured to $(q,t)$ count the standard tableaux of shape $\lambda $. If this conjecture is correct, then there exist statistics $a_\mu(T)$ and $b_\mu(T)$ such that the family of symmetric functions $H_\mu[X;q,t] = \sum_\lambda K_{\lambda \mu}(q,t) s_\lambda [X]$ are generating functions for the standard tableaux of size $|\mu|$ in the sense that $H_\mu[X;q,t] = \sum_{T} q^{a_\mu(T)} t^{b_\mu(T)} s_{\lambda (T)}[X]$ where the sum is over standard tableau of of size $|\mu|$. We give a formula for a symmetric function operator $H_2^{qt}$ with the property that $H_2^{qt} H_{(2^a1^b)}[X;q,t]= H_{(2^{a+1}1^b)}[X;q,t]$. This operator has a combinatorial action on the Schur function basis. We use this Schur function action to show by induction that $H_{(2^a1^b)}[X;q,t]$ is the generating function for standard tableaux of size $2a+b$ (and hence that $K_{\lambda (2^a1^b)}(q,t)$ is a polynomial with non-negative integer coefficients). The inductive proof gives an algorithm for 'building' the standard tableaux of size $n+2$ from the standard tableaux of size $n$ and divides the standard tableaux into classes that are generalizations of the catabolism type. We show that reversing this construction gives the statistics $a_\mu(T)$ and $b_\mu(T)$ when $\mu$ is of the form $(2^a1^b)$ and that these statistics prove conjectures about the relationship between adjacent rows of the $(q,t)$-Kostka matrix that were suggested by Lynne Butler.


2015 ◽  
Vol 30 (30) ◽  
pp. 1550176 ◽  
Author(s):  
Liqiang Cai ◽  
Lifang Wang ◽  
Ke Wu ◽  
Jie Yang

We provide a vertex operator realization for a two-parameter generalization of MacMahon’s formula introduced by M. Vuletić [Trans. Amer. Math. Soc. 361, 2789 (2009)]. Since the generalized MacMahon function is the kernel function of some Macdonald symmetric function, we consider the action of two vertex operators on a state corresponding to a Macdonald symmetric function. It becomes evident that the vertex operators appear to be the creation and annihilation operators, respectively on the state.


1995 ◽  
Vol 10 (27) ◽  
pp. 3921-3936 ◽  
Author(s):  
V. MAROTTA ◽  
A. SCIARRINO

A vertex operator realization of generalized Kac-Moody algebras introduced by Borcherds is presented in the case of a single imaginary simple root. The structure of the fundamental representations is discussed. The possible relevance of the Borcherds algebra in many-particle field theory and in string theory is briefly discussed.


1988 ◽  
Vol 14 (2) ◽  
pp. 429
Author(s):  
Tran
Keyword(s):  

1989 ◽  
Vol 15 (1) ◽  
pp. 313
Author(s):  
Tran
Keyword(s):  

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Dan Xie ◽  
Wenbin Yan

Abstract We identify vertex operator algebras (VOAs) of a class of Argyres-Douglas (AD) matters with two types of non-abelian flavor symmetries. They are the W algebras defined using nilpotent orbit with partition [qm, 1s]. Gauging above AD matters, we can find VOAs for more general $$ \mathcal{N} $$ N = 2 SCFTs engineered from 6d (2, 0) theories. For example, the VOA for general (AN − 1, Ak − 1) theory is found as the coset of a collection of above W algebras. Various new interesting properties of 2d VOAs such as level-rank duality, conformal embedding, collapsing levels, coset constructions for known VOAs can be derived from 4d theory.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 717
Author(s):  
Mariia Nazarkevych ◽  
Natalia Kryvinska ◽  
Yaroslav Voznyi

This article presents a new method of image filtering based on a new kind of image processing transformation, particularly the wavelet-Ateb–Gabor transformation, that is a wider basis for Gabor functions. Ateb functions are symmetric functions. The developed type of filtering makes it possible to perform image transformation and to obtain better biometric image recognition results than traditional filters allow. These results are possible due to the construction of various forms and sizes of the curves of the developed functions. Further, the wavelet transformation of Gabor filtering is investigated, and the time spent by the system on the operation is substantiated. The filtration is based on the images taken from NIST Special Database 302, that is publicly available. The reliability of the proposed method of wavelet-Ateb–Gabor filtering is proved by calculating and comparing the values of peak signal-to-noise ratio (PSNR) and mean square error (MSE) between two biometric images, one of which is filtered by the developed filtration method, and the other by the Gabor filter. The time characteristics of this filtering process are studied as well.


Sign in / Sign up

Export Citation Format

Share Document