Chemical Functionalization as a Powerful Tool to Broaden the Scope of Applications of Cellulose Nanofibers

Author(s):  
Philippe Tingaut ◽  
Tanja Zimmermann
2020 ◽  
Vol 8 (44) ◽  
pp. 15852-15859
Author(s):  
Jiu Chen ◽  
Fuhua Li ◽  
Yurong Tang ◽  
Qing Tang

Chemical functionalization can significantly improve the stability of meta-stable 1T′-MoS2 and tune the surface HER activity.


2018 ◽  
Vol 72 (1) ◽  
pp. 59-65
Author(s):  
Masayuki Kawasaki
Keyword(s):  

2020 ◽  
Vol 138 (11) ◽  
pp. 50005
Author(s):  
Natália Ferreira Braga ◽  
Hao Ding ◽  
Luyi Sun ◽  
Fabio Roberto Passador

2020 ◽  
Vol 31 (7) ◽  
pp. 2932-2941 ◽  
Author(s):  
Annie M. Rahmatika ◽  
Yohsuke Goi ◽  
Takeo Kitamura ◽  
Yuko Morita ◽  
Ferry Iskandar ◽  
...  

2014 ◽  
Vol 240 ◽  
pp. 255-260 ◽  
Author(s):  
Martin Schade ◽  
Steffen Franzka ◽  
Anja Schröter ◽  
Franco Cappuccio ◽  
Martyna Gajda ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1841
Author(s):  
Kang Li ◽  
Xuejie Zhang ◽  
Yan Qin ◽  
Ying Li

Aerogels have been widely used in the adsorption of pollutants because of their large specific surface area. As an environmentally friendly natural polysaccharide, cellulose is a good candidate for the preparation of aerogels due to its wide sources and abundant polar groups. In this paper, an approach to construct cellulose nanofibers aerogels with both the good mechanical property and the high pollutants adsorption capability through chemical crosslinking was explored. On this basis, TiO2 nanoparticles were loaded on the aerogel through the sol-gel method followed by the hydrothermal method, thereby the enriched pollutants in the aerogel could be degraded synchronously. The chemical cross-linker not only helps build the three-dimensional network structure of aerogels, but also provides loading sites for TiO2. The degradation efficiency of pollutants by the TiO2@CNF Aerogel can reach more than 90% after 4 h, and the efficiency is still more than 70% after five cycles. The prepared TiO2@CNF Aerogels have high potential in the field of environmental management, because of the high efficiency of treating organic pollutes and the sustainability of the materials. The work also provides a choice for the functional utilization of cellulose, offering a valuable method to utilize the large amount of cellulose in nature.


2021 ◽  
Vol 33 (28) ◽  
pp. 2170219
Author(s):  
Tomas Rosén ◽  
Benjamin S. Hsiao ◽  
L. Daniel Söderberg
Keyword(s):  

RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20216-20231
Author(s):  
Ayelén F. Crespi ◽  
Verónica M. Sánchez ◽  
Daniel Vega ◽  
Ana L. Pérez ◽  
Carlos D. Brondino ◽  
...  

The complex chemical functionalization of the aldehyde group was elucidated in copper and cobalt complexes for 4- and 3-pyridinecarboxaldehyde ligands.


Cellulose ◽  
2021 ◽  
Author(s):  
Katri S. Kontturi ◽  
Koon-Yang Lee ◽  
Mitchell P. Jones ◽  
William W. Sampson ◽  
Alexander Bismarck ◽  
...  

Abstract Cellulose nanopapers provide diverse, strong and lightweight templates prepared entirely from sustainable raw materials, cellulose nanofibers (CNFs). Yet the strength of CNFs has not been fully capitalized in the resulting nanopapers and the relative influence of CNF strength, their bonding, and biological origin to nanopaper strength are unknown. Here, we show that basic principles from paper physics can be applied to CNF nanopapers to illuminate those relationships. Importantly, it appeared that ~ 200 MPa was the theoretical maximum for nanopapers with random fibril orientation. Furthermore, we demonstrate the contrast in tensile strength for nanopapers prepared from bacterial cellulose (BC) and wood-based nanofibrillated cellulose (NFC). Endemic amorphous polysaccharides (hemicelluloses) in NFC act as matrix in NFC nanopapers, strengthening the bonding between CNFs just like it improves the bonding between CNFs in the primary cell wall of plants. The conclusions apply to all composites containing non-woven fiber mats as reinforcement. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document