Mellin–Barnes integrals and Mellin convolution integrals

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 354
Author(s):  
Alexander Apelblat ◽  
Francesco Mainardi

Using a special case of the Efros theorem which was derived by Wlodarski, and operational calculus, it was possible to derive many infinite integrals, finite integrals and integral identities for the function represented by the inverse Laplace transform. The integral identities are mainly in terms of convolution integrals with the Mittag–Leffler and Volterra functions. The integrands of determined integrals include elementary functions (power, exponential, logarithmic, trigonometric and hyperbolic functions) and the error functions, the Mittag–Leffler functions and the Volterra functions. Some properties of the inverse Laplace transform of s−μexp(−sν) with μ≥0 and 0<ν<1 are presented.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Roland Duduchava

AbstractThe purpose of the present research is to investigate a general mixed type boundary value problem for the Laplace–Beltrami equation on a surface with the Lipschitz boundary 𝒞 in the non-classical setting when solutions are sought in the Bessel potential spaces \mathbb{H}^{s}_{p}(\mathcal{C}), \frac{1}{p}<s<1+\frac{1}{p}, 1<p<\infty. Fredholm criteria and unique solvability criteria are found. By the localization, the problem is reduced to the investigation of model Dirichlet, Neumann and mixed boundary value problems for the Laplace equation in a planar angular domain \Omega_{\alpha}\subset\mathbb{R}^{2} of magnitude 𝛼. The model mixed BVP is investigated in the earlier paper [R. Duduchava and M. Tsaava, Mixed boundary value problems for the Helmholtz equation in a model 2D angular domain, Georgian Math. J.27 (2020), 2, 211–231], and the model Dirichlet and Neumann boundary value problems are studied in the non-classical setting. The problems are investigated by the potential method and reduction to locally equivalent 2\times 2 systems of Mellin convolution equations with meromorphic kernels on the semi-infinite axes \mathbb{R}^{+} in the Bessel potential spaces. Such equations were recently studied by R. Duduchava [Mellin convolution operators in Bessel potential spaces with admissible meromorphic kernels, Mem. Differ. Equ. Math. Phys.60 (2013), 135–177] and V. Didenko and R. Duduchava [Mellin convolution operators in Bessel potential spaces, J. Math. Anal. Appl.443 (2016), 2, 707–731].


2002 ◽  
Vol 45 (1) ◽  
pp. 65-69 ◽  
Author(s):  
I.S. Goldberg ◽  
M.G. Block ◽  
R.E. Rojas

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ze Long Liu ◽  
Bianka Mecaj ◽  
Matthias Neubert ◽  
Xing Wang

Abstract Building on the recent derivation of a bare factorization theorem for the b-quark induced contribution to the h → γγ decay amplitude based on soft-collinear effective theory, we derive the first renormalized factorization theorem for a process described at subleading power in scale ratios, where λ = mb/Mh « 1 in our case. We prove two refactorization conditions for a matching coefficient and an operator matrix element in the endpoint region, where they exhibit singularities giving rise to divergent convolution integrals. The refactorization conditions ensure that the dependence of the decay amplitude on the rapidity regulator, which regularizes the endpoint singularities, cancels out to all orders of perturbation theory. We establish the renormalized form of the factorization formula, proving that extra contributions arising from the fact that “endpoint regularization” does not commute with renormalization can be absorbed, to all orders, by a redefinition of one of the matching coefficients. We derive the renormalization-group evolution equation satisfied by all quantities in the factorization formula and use them to predict the large logarithms of order $$ {\alpha \alpha}_s^2{L}^k $$ αα s 2 L k in the three-loop decay amplitude, where $$ L=\ln \left(-{M}_h^2/{m}_b^2\right) $$ L = ln − M h 2 / m b 2 and k = 6, 5, 4, 3. We find perfect agreement with existing numerical results for the amplitude and analytical results for the three-loop contributions involving a massless quark loop. On the other hand, we disagree with the results of previous attempts to predict the series of subleading logarithms $$ \sim {\alpha \alpha}_s^n{L}^{2n+1} $$ ∼ αα s n L 2 n + 1 .


Author(s):  
A. Argento ◽  
R. A. Scott

Abstract A method is given by which the response of a rotating Timoshenko beam subjected to an accelerating fixed direction force can be determined. The beam model includes the gyroscopically induced displacement transverse to the direction of the load. The solution for pinned supports is set up in general form using multi-integral transforms and the inversion is expressed in terms of convolution integrals. These are numerically integrated for a uniformly distributed load having an exponentially varying velocity function. Results are presented for the displacement under the load’s center as a function of position. Comparisons are made between the responses to a constant velocity load and a load which accelerates up to the same velocity.


Sign in / Sign up

Export Citation Format

Share Document