VERTEX VULNERABILITY PARAMETER OF GEAR GRAPHS

2011 ◽  
Vol 22 (05) ◽  
pp. 1187-1195 ◽  
Author(s):  
AYSUN AYTAC ◽  
TUFAN TURACI

For a vertex v of a graph G = (V,E), the independent domination number (also called the lower independence number) iv(G) of G relative to v is the minimum cardinality of a maximal independent set in G that contains v. The average lower independence number of G is [Formula: see text]. In this paper, this parameter is defined and examined, also the average lower independence number of gear graphs is considered. Then, an algorithm for the average lower independence number of any graph is offered.

10.37236/847 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Odile Favaron

A dominating set $S$ of a graph $G$ is a global (strong) defensive alliance if for every vertex $v\in S$, the number of neighbors $v$ has in $S$ plus one is at least (greater than) the number of neighbors it has in $V\setminus S$. The dominating set $S$ is a global (strong) offensive alliance if for every vertex $v\in V\setminus S$, the number of neighbors $v$ has in $S$ is at least (greater than) the number of neighbors it has in $V\setminus S$ plus one. The minimum cardinality of a global defensive (strong defensive, offensive, strong offensive) alliance is denoted by $\gamma_a(G)$ ($\gamma_{\hat a}(G)$, $\gamma_o(G)$, $\gamma_{\hat o}(G))$. We compare each of the four parameters $\gamma_a, \gamma_{\hat a}, \gamma_o, \gamma_{\hat o}$ to the independent domination number $i$. We show that $i(G)\le \gamma ^2_a(G)-\gamma_a(G)+1$ and $i(G)\le \gamma_{\hat{a}}^2(G)-2\gamma_{\hat{a}}(G)+2$ for every graph; $i(G)\le \gamma ^2_a(G)/4 +\gamma_a(G)$ and $i(G)\le \gamma_{\hat{a}}^2(G)/4 +\gamma_{\hat{a}}(G)/2$ for every bipartite graph; $i(G)\le 2\gamma_a(G)-1$ and $i(G)=3\gamma_{\hat{a}}(G)/2 -1$ for every tree and describe the extremal graphs; and that $\gamma_o(T)\le 2i(T)-1$ and $i(T)\le \gamma_{\hat o}(T)-1$ for every tree. We use a lemma stating that $\beta(T)+2i(T)\ge n+1$ in every tree $T$ of order $n$ and independence number $\beta(T)$.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1411
Author(s):  
Magda Dettlaff ◽  
Magdalena Lemańska ◽  
Jerzy Topp

The cardinality of a largest independent set of G, denoted by α(G), is called the independence number of G. The independent domination number i(G) of a graph G is the cardinality of a smallest independent dominating set of G. We introduce the concept of the common independence number of a graph G, denoted by αc(G), as the greatest integer r such that every vertex of G belongs to some independent subset X of VG with |X|≥r. The common independence number αc(G) of G is the limit of symmetry in G with respect to the fact that each vertex of G belongs to an independent set of cardinality αc(G) in G, and there are vertices in G that do not belong to any larger independent set in G. For any graph G, the relations between above parameters are given by the chain of inequalities i(G)≤αc(G)≤α(G). In this paper, we characterize the trees T for which i(T)=αc(T), and the block graphs G for which αc(G)=α(G).


Author(s):  
Ammar Babikir ◽  
Magda Dettlaff ◽  
Michael A. Henning ◽  
Magdalena Lemańska

AbstractA set S of vertices in a graph G is a dominating set if every vertex not in S is ad jacent to a vertex in S. If, in addition, S is an independent set, then S is an independent dominating set. The independent domination number i(G) of G is the minimum cardinality of an independent dominating set in G. The independent domination subdivision number $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the independent domination number. We show that for every connected graph G on at least three vertices, the parameter $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) is well defined and differs significantly from the well-studied domination subdivision number $$\mathrm{sd_\gamma }(G)$$ sd γ ( G ) . For example, if G is a block graph, then $$\mathrm{sd_\gamma }(G) \le 3$$ sd γ ( G ) ≤ 3 , while $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) can be arbitrary large. Further we show that there exist connected graph G with arbitrarily large maximum degree $$\Delta (G)$$ Δ ( G ) such that $$ \hbox {sd}_{\mathrm{i}}(G) \ge 3 \Delta (G) - 2$$ sd i ( G ) ≥ 3 Δ ( G ) - 2 , in contrast to the known result that $$\mathrm{sd_\gamma }(G) \le 2 \Delta (G) - 1$$ sd γ ( G ) ≤ 2 Δ ( G ) - 1 always holds. Among other results, we present a simple characterization of trees T with $$ \hbox {sd}_{\mathrm{i}}(T) = 1$$ sd i ( T ) = 1 .


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 359 ◽  
Author(s):  
Chalermpong Worawannotai ◽  
Watcharintorn Ruksasakchai

The domination game is played on a graph by two players, Dominator and Staller, who alternately choose a vertex of G. Dominator aims to finish the game in as few turns as possible while Staller aims to finish the game in as many turns as possible. The game ends when all vertices are dominated. The game domination number, denoted by γ g ( G ) (respectively γ g ′ ( G ) ), is the total number of turns when both players play optimally and when Dominator (respectively Staller) starts the game. In this paper, we study a version of this game where the set of chosen vertices is always independent. This version turns out to be another game known as the competition-independence game. The competition-independence game is played on a graph by two players, Diminisher and Sweller. They take turns in constructing maximal independent set M, where Diminisher tries to minimize | M | and Sweller tries to maximize | M | . Note that, actually, it is the domination game in which the set of played vertices is independent. The competition-independence number, denoted by I d ( G ) (respectively I s ( G ) ) is the optimal size of the final independent set in the competition-independence game if Diminisher (respectively Sweller) starts the game. In this paper, we check whether some well-known results in the domination game hold for the competition-independence game. We compare the competition-independence numbers to the game domination numbers. Moreover, we provide a family of graphs such that many parameters are equal. Finally, we present a realization result on the competition-independence numbers.


2017 ◽  
Vol 4 (8) ◽  
pp. 25-37 ◽  
Author(s):  
Doug Chatham

Abstract Given a (symmetrically-moving) piece from a chesslike game, such as shogi, and an n×n board, we can form a graph with a vertex for each square and an edge between two vertices if the piece can move from one vertex to the other. We consider two pieces from shogi: the dragon king, which moves like a rook and king from chess, and the dragon horse, which moves like a bishop and rook from chess. We show that the independence number for the dragon kings graph equals the independence number for the queens graph. We show that the (independent) domination number of the dragon kings graph is n − 2 for 4 ≤ n ≤ 6 and n − 3 for n ≥ 7. For the dragon horses graph, we show that the independence number is 2n − 3 for n ≥ 5, the domination number is at most n−1 for n ≥ 4, and the independent domination number is at most n for n ≥ 5.


2017 ◽  
Vol 09 (02) ◽  
pp. 1750023 ◽  
Author(s):  
Nacéra Meddah ◽  
Mustapha Chellali

A Roman dominating function (RDF) on a graph [Formula: see text] is a function [Formula: see text] satisfying the condition that every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] of [Formula: see text] for which [Formula: see text]. The weight of a RDF is the sum [Formula: see text], and the minimum weight of a RDF [Formula: see text] is the Roman domination number [Formula: see text]. A subset [Formula: see text] of [Formula: see text] is a [Formula: see text]-independent set of [Formula: see text] if every vertex of [Formula: see text] has at most one neighbor in [Formula: see text] The maximum cardinality of a [Formula: see text]-independent set of [Formula: see text] is the [Formula: see text]-independence number [Formula: see text] Both parameters are incomparable in general, however, we show that if [Formula: see text] is a tree, then [Formula: see text]. Moreover, all extremal trees attaining equality are characterized.


2015 ◽  
Vol 23 (2) ◽  
pp. 187-199
Author(s):  
C. Natarajan ◽  
S.K. Ayyaswamy

Abstract Let G = (V;E) be a graph. A set S ⊂ V (G) is a hop dominating set of G if for every v ∈ V - S, there exists u ∈ S such that d(u; v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by γh(G). In this paper we characterize the family of trees and unicyclic graphs for which γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the total domination and connected domination numbers of G respectively. We then present the strong equality of hop domination and hop independent domination numbers for trees. Hop domination numbers of shadow graph and mycielskian graph of graph are also discussed.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 820
Author(s):  
Pu Wu ◽  
Huiqin Jiang ◽  
Sakineh Nazari-Moghaddam ◽  
Seyed Mahmoud Sheikholeslami ◽  
Zehui Shao ◽  
...  

A set S ⊆ V ( G ) in a graph G is a dominating set if every vertex of G is either in S or adjacent to a vertex of S . A dominating set S is independent if any pair of vertices in S is not adjacent. The minimum cardinality of an independent dominating set on a graph G is called the independent domination number i ( G ) . A graph G is independent domination stable if the independent domination number of G remains unchanged under the removal of any vertex. In this paper, we study the basic properties of independent domination stable graphs, and we characterize all independent domination stable trees and unicyclic graphs. In addition, we establish bounds on the order of independent domination stable trees.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 194 ◽  
Author(s):  
Abel Cabrera-Martínez ◽  
Juan Carlos Hernández-Gómez ◽  
Ernesto Parra-Inza ◽  
José María Sigarreta Almira

A set of vertices of a graph G is a total dominating set if every vertex of G is adjacent to at least one vertex in such a set. We say that a total dominating set D is a total outer k-independent dominating set of G if the maximum degree of the subgraph induced by the vertices that are not in D is less or equal to k − 1 . The minimum cardinality among all total outer k-independent dominating sets is the total outer k-independent domination number of G. In this article, we introduce this parameter and begin with the study of its combinatorial and computational properties. For instance, we give several closed relationships between this novel parameter and other ones related to domination and independence in graphs. In addition, we give several Nordhaus–Gaddum type results. Finally, we prove that computing the total outer k-independent domination number of a graph G is an NP-hard problem.


Sign in / Sign up

Export Citation Format

Share Document