scholarly journals ON SPECTRAL RENORMALIZATION GROUP

2009 ◽  
Vol 21 (04) ◽  
pp. 511-548 ◽  
Author(s):  
JÜRG FRÖHLICH ◽  
MARCEL GRIESEMER ◽  
ISRAEL MICHAEL SIGAL

The operator-theoretic renormalization group (RG) methods are powerful analytic tools to explore spectral properties of field-theoretical models such as quantum electrodynamics (QED) with non-relativistic matter. In this paper, these methods are extended and simplified. In a companion paper, our variant of operator-theoretic RG methods is applied to establishing the limiting absorption principle in non-relativistic QED near the ground state energy.

2001 ◽  
Vol 13 (02) ◽  
pp. 221-251 ◽  
Author(s):  
MASAO HIROKAWA

For the ground state energy of the spin-boson (SB) model, we give a new upper bound in the case with infrared singularity condition (i.e. without infrared cutoff), and a new lower bound in the case of massless bosons with infrared regularity condition. We first investigate spectral properties of the Wigner–Weisskopf (WW) model, and apply them to SB model to achieve our purpose. Then, as an extra result of the spectral analysis for WW model, we show that a non-perturbative ground state appears, and its ground state energy is so low that we cannot conjecture it by using the regular perturbation theory.


2018 ◽  
Vol 33 (13) ◽  
pp. 1850073 ◽  
Author(s):  
Nirmalendu Acharyya ◽  
A. P. Balachandran ◽  
Mahul Pandey ◽  
Sambuddha Sanyal ◽  
Sachindeo Vaidya

We present variational estimates for the low-lying energies of a simple matrix model that approximates SU(3) Yang–Mills theory on a three-sphere of radius R. By fixing the ground state energy, we obtain the (integrated) renormalization group (RG) equation for the Yang–Mills coupling g as a function of R. This RG equation allows to estimate the mass of other glueball states, which we find to be in excellent agreement with lattice simulations.


2002 ◽  
Vol 17 (06n07) ◽  
pp. 874-878 ◽  
Author(s):  
IGOR O. CHEREDNIKOV

A role of the renormalization group invariance in calculations of the ground state energy for models with confined fermion fields is discussed. The case of the (1+1)D MIT bag model with the massive fermions is studied in detail.


1994 ◽  
Vol 4 (9) ◽  
pp. 1281-1285 ◽  
Author(s):  
P. Sutton ◽  
D. L. Hunter ◽  
N. Jan

2007 ◽  
Vol 21 (24) ◽  
pp. 1635-1642
Author(s):  
MIAN LIU ◽  
WENDONG MA ◽  
ZIJUN LI

We conducted a theoretical study on the properties of a polaron with electron-LO phonon strong-coupling in a cylindrical quantum dot under an electric field using linear combination operator and unitary transformation methods. The changing relations between the ground state energy of the polaron in the quantum dot and the electric field intensity, restricted intensity, and cylindrical height were derived. The numerical results show that the polar of the quantum dot is enlarged with increasing restricted intensity and decreasing cylindrical height, and with cylindrical height at 0 ~ 5 nm , the polar of the quantum dot is strongest. The ground state energy decreases with increasing electric field intensity, and at the moment of just adding electric field, quantum polarization is strongest.


2017 ◽  
Vol 31 (07) ◽  
pp. 1750071
Author(s):  
Z. D. Vatansever ◽  
S. Sakiroglu ◽  
I. Sokmen

In this paper, the effects of a repulsive scattering center on the ground-state energy and spin properties of a three-electron parabolic quantum dot are investigated theoretically by means of configuration interaction method. Phase transition from a weakly correlated regime to a strongly correlated regime is examined from several strengths and positions of Gaussian impurity. Numerical results reveal that the transition from spin-1/2 to spin-3/2 state depends strongly on the location of the impurity which accordingly states the controllability of the spin polarization. Moreover, broken circular symmetry results in more pronounced electronic charge localization.


Sign in / Sign up

Export Citation Format

Share Document