Continuous Quantum Measurement: Local and Global Approaches

1997 ◽  
Vol 09 (08) ◽  
pp. 907-920 ◽  
Author(s):  
S. Albeverio ◽  
V. N. Kolokol'tsov ◽  
O. G. Smolyanov

In 1979 B. Menski suggested a formula for the linear propagator of a quantum system with continuously observed position in terms of a heuristic Feynman path integral. In 1989 the aposterior linear stochastic Schrödinger equation was derived by V. P. Belavkin describing the evolution of a quantum system under continuous (nondemolition) measurement. In the present paper, these two approaches to the description of continuous quantum measurement are brought together from the point of view of physics as well as mathematics. A self-contained deductions of both Menski's formula and the Belavkin equation is given, and the new insights in the problem provided by the local (stochastic equation) approach to the problem are described. Furthermore, a mathematically well-defined representations of the solution of the aposterior Schrödinger equation in terms of the path integral is constructed and shown to be heuristically equivalent to the Menski propagator.

2021 ◽  
Vol 15 (01) ◽  
pp. 61-75
Author(s):  
Everaldo M. Bonotto ◽  
Felipe Federson ◽  
Márcia Federson

The Schrödinger equation is fundamental in quantum mechanics as it makes it possible to determine the wave function from energies and to use this function in the mean calculation of variables, for example, as the most likely position of a group of one or more massive particles. In this paper, we present a survey on some theories involving the Schrödinger equation and the Feynman path integral. We also consider a Feynman–Kac-type formula, as introduced by Patrick Muldowney, with the Henstock integral in the description of the expectation of random walks of a particle. It is well known that the non-absolute integral defined by R. Henstock “fixes” the defects of the Feynman integral. Possible applications where the potential in the Schrödinger equation can be highly oscillating, discontinuous or delayed are mentioned in the end of the paper.


2002 ◽  
Vol 132 (2) ◽  
pp. 353-375 ◽  
Author(s):  
VASSILI N. KOLOKOLTSOV

Solutions to the Schrödinger, heat and stochastic Schrödinger equation with rather general potentials are represented, both in x- and p-representations, as integrals over the path space with respect to σ-finite measures. In the case of x-representation, the corresponding measure is concentrated on the Cameron–Martin Hilbert space of curves with L2-integrable derivatives. The case of the Schrödinger equation is treated by means of a regularization based on the introduction of either complex times or continuous non-demolition observations.


Author(s):  
Frank S. Levin

Chapter 7 illustrates the results obtained by applying the Schrödinger equation to a simple pedagogical quantum system, the particle in a one-dimensional box. The wave functions are seen to be sine waves; their wavelengths are evaluated and used to calculate the quantized energies via the de Broglie relation. An energy-level diagram of some of the energies is constructed; on it are illustrations of the corresponding wave functions and probability distributions. The wave functions are seen to be either symmetric or antisymmetric about the midpoint of the line representing the box, thereby providing a lead-in to the later exploration of certain symmetry properties of multi-electron atoms. It is next pointed out that the Schrödinger equation for this system is identical to Newton’s equation describing the vibrations of a stretched musical string. The different meaning of the two solutions is discussed, as is the concept and structure of linear superpositions of them.


2004 ◽  
Vol 18 (10n11) ◽  
pp. 1465-1478 ◽  
Author(s):  
CH. KUNSOMBAT ◽  
V. SA-YAKANIT

In this paper we consider the problem of a polymer chain in random media with finite correlation. We show that the mean square end-to-end distance of a polymer chain can be obtained using the Feynman path integral developed by Feynman for treating the polaron problem and successfuly applied to the theory of heavily doped semiconductor. We show that for short-range correlation or the white Gaussian model we derive the results obtained by Edwards and Muthukumar using the replica method and for long-range correlation we obtain the result of Yohannes Shiferaw and Yadin Y. Goldschimidt. The main idea of this paper is to generalize the model proposed by Edwards and Muthukumar for short-range correlation to finite correlation. Instead of using a replica method, we employ the Feynman path integral by modeling the polymer Hamiltonian as a model of non-local quadratic trial Hamiltonian. This non-local trial Hamiltonian is essential as it will reflect the translation invariant of the original Hamiltonian. The calculation is proceeded by considering the differences between the polymer propagator and the trial propagator as the first cumulant approximation. The variational principle is used to find the optimal values of the variational parameters and the mean square end-to-end distance is obtained. Several asymptotic limits are considered and a comparison between this approaches and replica approach will be discussed.


Sign in / Sign up

Export Citation Format

Share Document