A MEMORY-BASED SELF-GENERATED BASIS FUNCTION NEURAL NETWORK

1999 ◽  
Vol 09 (01) ◽  
pp. 41-59 ◽  
Author(s):  
CHUN-SHIN LIN ◽  
CHIEN-KUO LI

The paper presents a novel memory-based Self-Generated Basis Function Neural Network (SGBFN) that is composed of small CMACs. The SGBFN requires much smaller memory space than the conventional CMAC and has an excellent learning convergence property compared to multilayer neural networks. Each CMAC in the new structure takes a subset of problem inputs as its inputs. Several CMACs that have different subsets of inputs form a submodule and a group of submodules form a neural network. The output of a submodule is the product of its CMACs' outputs. Each submodule implements a self-generated basis function, which is developed during the learning. The output of the neural network is the sum of the outputs from the submodules. Using only a subset of inputs in each CMAC significantly reduces the required memory space in high-dimensional modeling. With the same size of memory, the new structure is able to achieve a much smaller learning error compared to the conventional CMAC.

2021 ◽  
Vol 17 (14) ◽  
pp. 135-153
Author(s):  
Haval Tariq Sadeeq ◽  
Thamer Hassan Hameed ◽  
Abdo Sulaiman Abdi ◽  
Ayman Nashwan Abdulfatah

Computer images consist of huge data and thus require more memory space. The compressed image requires less memory space and less transmission time. Imaging and video coding technology in recent years has evolved steadily. However, the image data growth rate is far above the compression ratio growth, Considering image and video acquisition system popularization. It is generally accepted, in particular that further improvement of coding efficiency within the conventional hybrid coding system is increasingly challenged. A new and exciting image compression solution is also offered by the deep convolution neural network (CNN), which in recent years has resumed the neural network and achieved significant success both in artificial intelligent fields and in signal processing. In this paper we include a systematic, detailed and current analysis of image compression techniques based on the neural network. Images are applied to the evolution and growth of compression methods based on the neural networks. In particular, the end-to-end frames based on neural networks are reviewed, revealing fascinating explorations of frameworks/standards for next-generation image coding. The most important studies are highlighted and future trends even envisaged in relation to image coding topics using neural networks.


2017 ◽  
Vol 6 (2) ◽  
pp. 269-284
Author(s):  
Shen Wang ◽  
Songling Huang ◽  
Qing Wang ◽  
Lisha Peng ◽  
Wei Zhao

Abstract. Electromagnetic acoustic transducers (EMATs) are noncontact transducers generating ultrasonic waves directly in the conductive sample. Despite the advantages, their transduction efficiencies are relatively low, so it is imperative to build accurate multiphysics models of EMATs and optimize the structural parameters accordingly, using a suitable optimization algorithm. The optimizing process often involves a large number of runs of the computationally expensive numerical models, so metamodels as substitutes for the real numerical models are helpful for the optimizations. In this work the focus is on the artificial neural networks as the metamodels of an omnidirectional EMAT, including the multilayer feedforward networks trained with the basic and improved back propagation algorithms and the radial basis function networks with exact and nonexact interpolations. The developed neural-network programs are tested on an example problem. Then the model of an omnidirectional EMAT generating Lamb waves in a linearized steel plate is introduced, and various approaches to calculate the amplitudes of the displacement component waveforms are discussed. The neural-network metamodels are then built for the EMAT model and compared to the displacement component amplitude (or ratio of amplitudes) surface data on a discrete grid of the design variables as the reference, applying a multifrequency model with FFT (fast Fourier transform)/IFFT (inverse FFT) processing. Finally the two-objective optimization problem is formulated with one objective function minimizing the ratio of the amplitude of the S0-mode Lamb wave to that of the A0 mode, and the other objective function minimizing as the negative amplitude of the A0 mode. Pareto fronts in the criterion space are solved with the neural-network models and the total time consumption is greatly decreased. From the study it could be observed that the radial basis function network with exact interpolation has the best performance considering its accuracy of approximation and the time required to build the metamodel.


Author(s):  
A.М. Заяц ◽  
С.П. Хабаров

Рассматривается процедура выбора структуры и параметров нейронной сети для классификации набора данных, известного как Ирисы Фишера, который включает в себя данные о 150 экземплярах растений трех различных видов. Предложен подход к решению данной задачи без использования дополнительных программных средств и мощных нейросетевых пакетов с использованием только средств стандартного браузера ОС. Это потребовало реализации ряда процедур на JavaScript c их подгрузкой в разработанную интерфейсную HTML-страницу. Исследование большого числа различных структур многослойных нейронных сетей, обучаемых на основе алгоритма обратного распространения ошибки, позволило выбрать для тестового набора данных структуру нейронной сети всего с одним скрытым слоем из трех нейронов. Это существенно упрощает реализацию классификатора Ирисов Фишера, позволяя его оформить в виде загружаемой с сервера HTML-страницы. The procedure for selecting the structure and parameters of the neural network for the classification of a data set known as Iris Fisher, which includes data on 150 plant specimens of three different species, is considered. An approach to solving this problem without using additional software and powerful neural network packages using only the tools of the standard OS browser is proposed. This required the implementation of a number of JavaScript procedures with their loading into the developed HTML interface page. The study of a large number of different structures of multilayer neural networks, trained on the basis of the back-propagation error algorithm, made it possible to choose the structure of a neural network with only one hidden layer of three neurons for a test dataset. This greatly simplifies the implementation of the Fisher Iris classifier, allowing it to be formatted as an HTML page downloaded from the server.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


Author(s):  
Saša Vasiljević ◽  
Jasna Glišović ◽  
Nadica Stojanović ◽  
Ivan Grujić

According to the World Health Organization, air pollution with PM10 and PM2.5 (PM-particulate matter) is a significant problem that can have serious consequences for human health. Vehicles, as one of the main sources of PM10 and PM2.5 emissions, pollute the air and the environment both by creating particles by burning fuel in the engine, and by wearing of various elements in some vehicle systems. In this paper, the authors conducted the prediction of the formation of PM10 and PM2.5 particles generated by the wear of the braking system using a neural network (Artificial Neural Networks (ANN)). In this case, the neural network model was created based on the generated particles that were measured experimentally, while the validity of the created neural network was checked by means of a comparative analysis of the experimentally measured amount of particles and the prediction results. The experimental results were obtained by testing on an inertial braking dynamometer, where braking was performed in several modes, that is under different braking parameters (simulated vehicle speed, brake system pressure, temperature, braking time, braking torque). During braking, the concentration of PM10 and PM2.5 particles was measured simultaneously. The total of 196 measurements were performed and these data were used for training, validation, and verification of the neural network. When it comes to simulation, a comparison of two types of neural networks was performed with one output and with two outputs. For each type, network training was conducted using three different algorithms of backpropagation methods. For each neural network, a comparison of the obtained experimental and simulation results was performed. More accurate prediction results were obtained by the single-output neural network for both particulate sizes, while the smallest error was found in the case of a trained neural network using the Levenberg-Marquardt backward propagation algorithm. The aim of creating such a prediction model is to prove that by using neural networks it is possible to predict the emission of particles generated by brake wear, which can be further used for modern traffic systems such as traffic control. In addition, this wear algorithm could be applied on other vehicle systems, such as a clutch or tires.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1526 ◽  
Author(s):  
Choongmin Kim ◽  
Jacob A. Abraham ◽  
Woochul Kang ◽  
Jaeyong Chung

Crossbar-based neuromorphic computing to accelerate neural networks is a popular alternative to conventional von Neumann computing systems. It is also referred as processing-in-memory and in-situ analog computing. The crossbars have a fixed number of synapses per neuron and it is necessary to decompose neurons to map networks onto the crossbars. This paper proposes the k-spare decomposition algorithm that can trade off the predictive performance against the neuron usage during the mapping. The proposed algorithm performs a two-level hierarchical decomposition. In the first global decomposition, it decomposes the neural network such that each crossbar has k spare neurons. These neurons are used to improve the accuracy of the partially mapped network in the subsequent local decomposition. Our experimental results using modern convolutional neural networks show that the proposed method can improve the accuracy substantially within about 10% extra neurons.


1991 ◽  
Vol 45 (10) ◽  
pp. 1706-1716 ◽  
Author(s):  
Mark Glick ◽  
Gary M. Hieftje

Artificial neural networks were constructed for the classification of metal alloys based on their elemental constituents. Glow discharge-atomic emission spectra obtained with a photodiode array spectrometer were used in multivariate calibrations for 7 elements in 37 Ni-based alloys (different types) and 15 Fe-based alloys. Subsets of the two major classes formed calibration sets for stepwise multiple linear regression. The remaining samples were used to validate the calibration models. Reference data from the calibration sets were then pooled into a single set to train neural networks with different architectures and different training parameters. After the neural networks learned to discriminate correctly among alloy classes in the training set, their ability to classify samples in the testing set was measured. In general, the neural network approach performed slightly better than the K-nearest neighbor method, but it suffered from a hidden classification mechanism and nonunique solutions. The neural network methodology is discussed and compared with conventional sample-classification techniques, and multivariate calibration of glow discharge spectra is compared with conventional univariate calibration.


2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


Sign in / Sign up

Export Citation Format

Share Document