VANISHING RESULTS FOR L2-BETTI NUMBERS AND L2-EULER CHARACTERISTICS AND THEIR APPLICATIONS

2008 ◽  
Vol 19 (01) ◽  
pp. 21-26 ◽  
Author(s):  
JANG HYUN JO

A CW-complex X is called a [G,m]-complex if X is an m-dimensional complex with π1(X) ≅ G and the universal cover [Formula: see text] is (m - 1)-connected. We show that if G has an infinite amenable normal subgroup, then the asphericity of a [G,m]-complex X is equivalent to the vanishing of L2-Euler characteristic of [Formula: see text]. This result corresponds to a generalization and a variation of earlier several works. Also, we show that the L2-Betti numbers of a group which belongs to the class of groups K𝔉 eventually vanish. As a byproduct, we give an example of a group which belongs to the class of groups H𝔉 but does not belong to the class of groups K𝔉.

Author(s):  
Jonathan A. Hillman

AbstractWe extend earlier work relating asphericity and Euler characteristics for finite complexes whose fundamental groups have nontrivial torsion free abelian normal subgroups. In particular a finitely presentable group which has a nontrivial elementary amenable subgroup whose finite subgroups have bounded order and with no nontrivial finite normal subgroup must have deficiency at most 1, and if it has a presentation of deficiency 1 then the corresponding 2-complex is aspherical. Similarly if the fundamental group of a closed 4-manifold with Euler characteristic 0 is virtually torsion free and elementary amenable then it either has 2 ends or is virtually an extension of Z by a subgroup of Q, or the manifold is asphencal and the group is virtually poly- Z of Hirsch length 4.


2016 ◽  
Vol 162 (3) ◽  
pp. 507-532 ◽  
Author(s):  
ŁUKASZ GRABOWSKI ◽  
THOMAS SCHICK

AbstractRecently the so-called Atiyah conjecture about l2-Betti numbers has been disproved. The counterexamples were found using a specific method of computing the spectral measure of a matrix over a complex group ring. We show that in many situations the same method allows to compute homology gradients, i.e. generalisations of l2-Betti numbers to fields of arbitrary characteristic. As an application we point out that (i) the homology gradient over any field of characteristic different than 2 can be an irrational number, and (ii) there exists a finite CW-complex with the property that the homology gradients of its universal cover taken over different fields have infinitely many different values.


Author(s):  
Yongqiang Liu ◽  
Laurentiu Maxim ◽  
Botong Wang

Abstract We use the non-proper Morse theory of Palais–Smale to investigate the topology of smooth closed subvarieties of complex semi-abelian varieties and that of their infinite cyclic covers. As main applications, we obtain the finite generation (except in the middle degree) of the corresponding integral Alexander modules as well as the signed Euler characteristic property and generic vanishing for rank-one local systems on such subvarieties. Furthermore, we give a more conceptual (topological) interpretation of the signed Euler characteristic property in terms of vanishing of Novikov homology. As a byproduct, we prove a generic vanishing result for the $L^2$-Betti numbers of very affine manifolds. Our methods also recast June Huh’s extension of Varchenko’s conjecture to very affine manifolds and provide a generalization of this result in the context of smooth closed sub-varieties of semi-abelian varieties.


2015 ◽  
Vol 145 (6) ◽  
pp. 1215-1222 ◽  
Author(s):  
S. M. Gusein-Zade ◽  
I. Luengo ◽  
A. Melle-Hernández

We generalize the notions of the orbifold Euler characteristic and of the higher-order orbifold Euler characteristics to spaces with actions of a compact Lie group using integration with respect to the Euler characteristic instead of the summation over finite sets. We show that the equation for the generating series of the kth-order orbifold Euler characteristics of the Cartesian products of the space with the wreath products actions proved by Tamanoi for finite group actions and by Farsi and Seaton for compact Lie group actions with finite isotropy subgroups holds in this case as well.


2020 ◽  
pp. 1-18
Author(s):  
Anwesh Ray ◽  
R. Sujatha

Abstract The notion of the truncated Euler characteristic for Iwasawa modules is an extension of the notion of the usual Euler characteristic to the case when the homology groups are not finite. This article explores congruence relations between the truncated Euler characteristics for dual Selmer groups of elliptic curves with isomorphic residual representations, over admissible p-adic Lie extensions. Our results extend earlier congruence results from the case of elliptic curves with rank zero to the case of higher rank elliptic curves. The results provide evidence for the p-adic Birch and Swinnerton-Dyer formula without assuming the main conjecture.


2000 ◽  
Vol 6 (3) ◽  
pp. 311-330 ◽  
Author(s):  
Jan Krajíček ◽  
Thomas Scanlon

AbstractWe recall the notions of weak and strong Euler characteristics on a first order structure and make explicit the notion of a Grothendieck ring of a structure. We define partially ordered Euler characteristic and Grothendieck ring and give a characterization of structures that have non-trivial partially ordered Grothendieck ring. We give a generalization of counting functions to locally finite structures, and use the construction to show that the Grothendieck ring of the complex numbers contains as a subring the ring of integer polynomials in continuum many variables. We prove the existence of a universal strong Euler characteristic on a structure. We investigate the dependence of the Grothendieck ring on the theory of the structure and give a few counter-examples. Finally, we relate some open problems and independence results in bounded arithmetic to properties of particular Grothendieck rings.


2019 ◽  
Vol 236 ◽  
pp. 251-310 ◽  
Author(s):  
MARC LEVINE

This paper examines Euler characteristics and characteristic classes in the motivic setting. We establish a motivic version of the Becker–Gottlieb transfer, generalizing a construction of Hoyois. Making calculations of the Euler characteristic of the scheme of maximal tori in a reductive group, we prove a generalized splitting principle for the reduction from $\operatorname{GL}_{n}$ or $\operatorname{SL}_{n}$ to the normalizer of a maximal torus (in characteristic zero). Ananyevskiy’s splitting principle reduces questions about characteristic classes of vector bundles in $\operatorname{SL}$-oriented, $\unicode[STIX]{x1D702}$-invertible theories to the case of rank two bundles. We refine the torus-normalizer splitting principle for $\operatorname{SL}_{2}$ to help compute the characteristic classes in Witt cohomology of symmetric powers of a rank two bundle, and then generalize this to develop a general calculus of characteristic classes with values in Witt cohomology.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1244 ◽  
Author(s):  
Sang-Eon Han

The present paper studies the fixed point property (FPP) for closed k-surfaces. We also intensively study Euler characteristics of a closed k-surface and a connected sum of closed k-surfaces. Furthermore, we explore some relationships between the FPP and Euler characteristics of closed k-surfaces. After explaining how to define the Euler characteristic of a closed k-surface more precisely, we confirm a certain consistency of the Euler characteristic of a closed k-surface and a continuous analog of it. In proceeding with this work, for a simple closed k-surface in Z 3 , say S k , we can see that both the minimal 26-adjacency neighborhood of a point x ∈ S k , denoted by M k ( x ) , and the geometric realization of it in R 3 , denoted by D k ( x ) , play important roles in both digital surface theory and fixed point theory. Moreover, we prove that the simple closed 18-surfaces M S S 18 and M S S 18 ′ do not have the almost fixed point property (AFPP). Consequently, we conclude that the triviality or the non-triviality of the Euler characteristics of simple closed k-surfaces have no relationships with the FPP in digital topology. Using this fact, we correct many errors in many papers written by L. Boxer et al.


2017 ◽  
Vol 60 (3) ◽  
pp. 490-509
Author(s):  
Andrew Fiori

AbstractWe prove an analogue of the Riemann–Hurwitz theorem for computing Euler characteristics of pullbacks of coherent sheaves through finite maps of smooth projective varieties in arbitrary dimensions, subject only to the condition that the irreducible components of the branch and ramification locus have simple normal crossings.


Sign in / Sign up

Export Citation Format

Share Document