Global existence of small amplitude solutions to the Vlasov–Poisson system with radiation damping

2015 ◽  
Vol 26 (12) ◽  
pp. 1550098 ◽  
Author(s):  
Jing Chen ◽  
Xianwen Zhang

In this paper, with some dispersion property and Schauder’s fixed point theorem, we establish the existence of a global classical solution to a damped Vlasov–Poisson system in three-dimensional space under the assumption that the initial datum is sufficiently small and decays at infinity in phase space. Before this work, only a local solution was obtained for the three-dimensional damped Vlasov–Poisson system.

2012 ◽  
Vol 26 (20) ◽  
pp. 1250120 ◽  
Author(s):  
FUZHONG NIAN ◽  
XINGYUAN WANG

Projective synchronization investigates the synchronization of systems evolve in same orientation, however, in practice, the situation of same orientation is only minority, and the majority is different orientation. This paper investigates the latter, proposes the concept of rotating synchronization, and verifies its necessity and feasibility via theoretical analysis and numerical simulations. Three conclusions were elicited: first, in three-dimensional space, two arbitrary nonlinear chaotic systems who evolve in different orientation can realize synchronization at end; second, projective synchronization is a special case of rotating synchronization, so, the application fields of rotating synchronization is more broadly than that of the former; third, the overall evolving information can be reflected by single state variable's evolving, it has self-similarity, this is the same as the basic idea of phase space reconstruction method, it indicates that we got the same result from different approach, so, our method and the phase space reconstruction method are verified each other.


2013 ◽  
Vol 48 (4) ◽  
pp. 141-145 ◽  
Author(s):  
Bartlomiej Oszczak ◽  
Eliza Sitnik

ABSTRACT During the process of satellite navigation, and also in the many tasks of classical positioning, we need to calculate the corrections to the initial (or approximate) location of the point using precise measurement of distances to the permanent points of reference (reference points). In this paper the authors have provided a way of developing Hausbrandt's equations, on the basis of which the exact coordinates of the point in two-dimensional space can be determined by using the computed correction to the coordinates of the auxiliary point. The authors developed generalised equations for threedimensional space introducing additional fixed point and have presented proof of derived formulas.


2015 ◽  
Vol 34 (3) ◽  
pp. 147 ◽  
Author(s):  
Luis Manuel Cruz-Orive ◽  
Ximo Gual-Arnau

The invariator is a method to generate a test line within an isotropically oriented plane through a fixed point, in such a way that the test line is effectively motion invariant in three dimensional space. Generalizations exist for non Euclidean spaces. The invariator design is convenient to estimate surface area and volume simultaneously. In recent years a number of new results have appeared which call for an updated survey. We include two new estimators, namely the a posteriori weighting estimator for surface area and volume, and the peak-and-valley formula for surface area.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document