scholarly journals THE INVARIATOR DESIGN: AN UPDATE

2015 ◽  
Vol 34 (3) ◽  
pp. 147 ◽  
Author(s):  
Luis Manuel Cruz-Orive ◽  
Ximo Gual-Arnau

The invariator is a method to generate a test line within an isotropically oriented plane through a fixed point, in such a way that the test line is effectively motion invariant in three dimensional space. Generalizations exist for non Euclidean spaces. The invariator design is convenient to estimate surface area and volume simultaneously. In recent years a number of new results have appeared which call for an updated survey. We include two new estimators, namely the a posteriori weighting estimator for surface area and volume, and the peak-and-valley formula for surface area.

2013 ◽  
Vol 48 (4) ◽  
pp. 141-145 ◽  
Author(s):  
Bartlomiej Oszczak ◽  
Eliza Sitnik

ABSTRACT During the process of satellite navigation, and also in the many tasks of classical positioning, we need to calculate the corrections to the initial (or approximate) location of the point using precise measurement of distances to the permanent points of reference (reference points). In this paper the authors have provided a way of developing Hausbrandt's equations, on the basis of which the exact coordinates of the point in two-dimensional space can be determined by using the computed correction to the coordinates of the auxiliary point. The authors developed generalised equations for threedimensional space introducing additional fixed point and have presented proof of derived formulas.


2011 ◽  
Vol 121-126 ◽  
pp. 4249-4253 ◽  
Author(s):  
Zhen Jie Hou ◽  
Li Guo Gu

For decades of research on triangulation, Scattered surface area triangulation has achieved some results, but a lot of algorithms extended to three-dimensional space still have some problems.In this paper I analyzes the existing algorithms and propose a idea based on the Combination of the incremental method and divide algorithm ,which directly realize the triangulation of scattered points in space. Through the triangulation of space scattered point ,it's result eventually meet the triangular mesh model of the reconstruction and the mesh is very uniform. The model reproduce the object model intuitively and clearly. This study provide meaning of the reference and guide in such a work


2018 ◽  
Vol 10 (5) ◽  
pp. 28
Author(s):  
William Chen

In this paper we present a lemma and two theorems. These theoretical results will be used to test whether or not a given surface model can be developed. We then choose some examples to demonstrate how to perform these tests. All of these theories and examples are for general purposes, and are not restricted to any particular field. Although all examples are in three-dimensional space, it can be expanded to finite n-dimensional Euclidean spaces. The objective of this paper is to link the relationship between developable surfaces and information loss.


2015 ◽  
Vol 26 (12) ◽  
pp. 1550098 ◽  
Author(s):  
Jing Chen ◽  
Xianwen Zhang

In this paper, with some dispersion property and Schauder’s fixed point theorem, we establish the existence of a global classical solution to a damped Vlasov–Poisson system in three-dimensional space under the assumption that the initial datum is sufficiently small and decays at infinity in phase space. Before this work, only a local solution was obtained for the three-dimensional damped Vlasov–Poisson system.


2007 ◽  
Vol 3 (1) ◽  
pp. 89-113
Author(s):  
Zoltán Gillay ◽  
László Fenyvesi

There was a method developed that generates the three-dimensional model of not axisymmetric produce, based on an arbitrary number of photos. The model can serve as a basis for calculating the surface area and the volume of produce. The efficiency of the reconstruction was tested on bell peppers and artificial shapes. In case of bell peppers 3-dimensional reconstruction was created from 4 images rotated in 45° angle intervals. The surface area and the volume were estimated on the basis of the reconstructed area. Furthermore, a new and simple reference method was devised to give precise results for the surface area of bell pepper. The results show that this 3D reconstruction-based surface area and volume calculation method is suitable to determine the surface area and volume of definite bell peppers with an acceptable error.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document