scholarly journals A New Nonrelativistic Investigation for Spectra of Heavy Quarkonia with Modified Cornell Potential: Noncommutative Three Dimensional Space and Phase Space Solutions

2016 ◽  
Vol 8 (3) ◽  
pp. 03025-1-03025-9 ◽  
Author(s):  
Abdelmadjid Maireche ◽  
◽  
Djenaoui Imane ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
M. Abu-Shady ◽  
T. A. Abdel-Karim ◽  
E. M. Khokha

The N-dimensional radial Schrödinger equation has been solved using the analytical exact iteration method (AEIM), in which the Cornell potential is generalized to finite temperature and chemical potential. The energy eigenvalues have been calculated in the N-dimensional space for any state. The present results have been applied for studying quarkonium properties such as charmonium and bottomonium masses at finite temperature and quark chemical potential. The binding energies and the mass spectra of heavy quarkonia are studied in the N-dimensional space. The dissociation temperatures for different states of heavy quarkonia are calculated in the three-dimensional space. The influence of dimensionality number (N) has been discussed on the dissociation temperatures. In addition, the energy eigenvalues are only valid for nonzero temperature at any value of quark chemical potential. A comparison is studied with other recent works. We conclude that the AEIM succeeds in predicting the heavy quarkonium at finite temperature and quark chemical potential in comparison with recent works.


2012 ◽  
Vol 26 (20) ◽  
pp. 1250120 ◽  
Author(s):  
FUZHONG NIAN ◽  
XINGYUAN WANG

Projective synchronization investigates the synchronization of systems evolve in same orientation, however, in practice, the situation of same orientation is only minority, and the majority is different orientation. This paper investigates the latter, proposes the concept of rotating synchronization, and verifies its necessity and feasibility via theoretical analysis and numerical simulations. Three conclusions were elicited: first, in three-dimensional space, two arbitrary nonlinear chaotic systems who evolve in different orientation can realize synchronization at end; second, projective synchronization is a special case of rotating synchronization, so, the application fields of rotating synchronization is more broadly than that of the former; third, the overall evolving information can be reflected by single state variable's evolving, it has self-similarity, this is the same as the basic idea of phase space reconstruction method, it indicates that we got the same result from different approach, so, our method and the phase space reconstruction method are verified each other.


2015 ◽  
Vol 26 (12) ◽  
pp. 1550098 ◽  
Author(s):  
Jing Chen ◽  
Xianwen Zhang

In this paper, with some dispersion property and Schauder’s fixed point theorem, we establish the existence of a global classical solution to a damped Vlasov–Poisson system in three-dimensional space under the assumption that the initial datum is sufficiently small and decays at infinity in phase space. Before this work, only a local solution was obtained for the three-dimensional damped Vlasov–Poisson system.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


Sign in / Sign up

Export Citation Format

Share Document