scholarly journals Extended Fuller index, sky catastrophes and the Seifert conjecture

2018 ◽  
Vol 29 (13) ◽  
pp. 1850096 ◽  
Author(s):  
Yasha Savelyev

We extend the classical Fuller index, and use this to prove that for a certain general class of vector fields [Formula: see text] on a compact smooth manifold, if a homotopy of smooth non-singular vector fields starting at [Formula: see text] has no sky catastrophes as defined by the paper, then the time 1 limit of the homotopy has periodic orbits. This class of vector fields includes the Hopf vector field on [Formula: see text]. A sky catastrophe is a kind of bifurcation originally discovered by Fuller. This answers a natural question that existed since the time of Fuller’s foundational papers. We also put strong constraints on the kind of sky-catastrophes that may appear for homotopies of Reeb vector fields.

2009 ◽  
Vol 30 (6) ◽  
pp. 1817-1841 ◽  
Author(s):  
ANA RECHTMAN

AbstractIn this paper we deal with the existence of periodic orbits of geodesible vector fields on closed 3-manifolds. A vector field is geodesible if there exists a Riemannian metric on the ambient manifold making its orbits geodesics. In particular, Reeb vector fields and vector fields that admit a global section are geodesible. We will classify the closed 3-manifolds that admit aperiodic volume-preservingCωgeodesible vector fields, and prove the existence of periodic orbits forCωgeodesible vector fields (not volume preserving), when the 3-manifold is not a torus bundle over the circle. We will also prove the existence of periodic orbits ofC2geodesible vector fields on some closed 3-manifolds.


2020 ◽  
Vol 30 (07) ◽  
pp. 2050098
Author(s):  
Tiago Carvalho ◽  
Bruno Rodrigues de Freitas

Our start point is a 3D piecewise smooth vector field defined in two zones and presenting a shared fold curve for the two smooth vector fields considered. Moreover, these smooth vector fields are symmetric relative to the fold curve, giving rise to a continuum of nested topological cylinders such that each orthogonal section of these cylinders is filled by centers. First, we prove that the normal form considered represents a whole class of piecewise smooth vector fields. After we perturb the initial model in order to obtain exactly [Formula: see text] invariant planes containing centers, a second perturbation of the initial model is also considered in order to obtain exactly [Formula: see text] isolated cylinders filled by periodic orbits. Finally, joining the two previous bifurcations we are able to exhibit a model, preserving the symmetry relative to the fold curve, and having exactly [Formula: see text] limit cycles.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1139 ◽  
Author(s):  
Bang-Yen Chen ◽  
Sharief Deshmukh ◽  
Amira A. Ishan

In this article, we study Jacobi-type vector fields on Riemannian manifolds. A Killing vector field is a Jacobi-type vector field while the converse is not true, leading to a natural question of finding conditions under which a Jacobi-type vector field is Killing. In this article, we first prove that every Jacobi-type vector field on a compact Riemannian manifold is Killing. Then, we find several necessary and sufficient conditions for a Jacobi-type vector field to be a Killing vector field on non-compact Riemannian manifolds. Further, we derive some characterizations of Euclidean spaces in terms of Jacobi-type vector fields. Finally, we provide examples of Jacobi-type vector fields on non-compact Riemannian manifolds, which are non-Killing.


2010 ◽  
Vol 07 (06) ◽  
pp. 951-960 ◽  
Author(s):  
JONG TAEK CHO ◽  
RAMESH SHARMA

We show that a compact contact Ricci soliton with a potential vector field V collinear with the Reeb vector field, is Einstein. We also show that a homogeneous H-contact gradient Ricci soliton is locally isometric to En+1 × Sn(4). Finally we obtain conditions so that the horizontal and tangential lifts of a vector field on the base manifold may be potential vector fields of a Ricci soliton on the unit tangent bundle.


2008 ◽  
Vol 84 (2) ◽  
pp. 155-162
Author(s):  
FABIANO G. B. BRITO ◽  
PABLO M. CHACÓN

AbstractThe energy of a unit vector field X on a closed Riemannian manifold M is defined as the energy of the section into T1M determined by X. For odd-dimensional spheres, the energy functional has an infimum for each dimension 2k+1 which is not attained by any non-singular vector field for k>1. For k=1, Hopf vector fields are the unique minima. In this paper we show that for any closed Riemannian manifold, the energy of a frame defined on the manifold, possibly except on a finite subset, admits a lower bound in terms of the total scalar curvature of the manifold. In particular, for odd-dimensional spheres this lower bound is attained by a family of frames defined on the sphere minus one point and consisting of vector fields parallel along geodesics.


2010 ◽  
Vol 21 (09) ◽  
pp. 1189-1218 ◽  
Author(s):  
DOMENICO PERRONE

Let (M, g) be a Riemannian manifold and T1 M its unit tangent sphere bundle. Minimality and harmonicity of unit vector fields have been extensively studied by considering on T1M the Sasaki metric [Formula: see text]. This metric, and other well-known Riemannian metrics on T1 M, are particular examples of Riemannian natural metrics. In this paper we equip T1 M with a Riemannian natural metric [Formula: see text] and in particular with a natural contact metric structure. Then, we study the minimality for Reeb vector fields of contact metric manifolds and of quasi-umbilical hypersurfaces of a Kähler manifold. Several explicit examples are given. In particular, the Reeb vector field ξ of a K-contact manifold is minimal for any [Formula: see text] that belongs to a family depending on two parameters of metrics of the Kaluza–Klein type. Next, we show that the Reeb vector field ξ of a K-contact manifold defines a harmonic map [Formula: see text] for any Riemannian natural metric [Formula: see text]. Besides this, if the Reeb vector ξ of an almost contact metric manifold is a CR map then the induced almost CR structure on M is strictly pseudoconvex and ξ is a pseudo-Hermitian map; if in addition ξ is geodesic then [Formula: see text] is a harmonic map. Moreover, the Reeb vector field ξ of a contact metric manifold is a CR map iff ξ is Killing and [Formula: see text] is a special metric of the Kaluza–Klein type. Finally, in the final section, we obtain that there is a family of strictly pseudoconvex CR structures on T1S2n+1 depending on one parameter, for which a Hopf vector field ξ determines a pseudo-harmonic map (in the sense of Barletta–Dragomir–Urakawa [8]) from S2n+1 to T1S2n+1.


1993 ◽  
Vol 36 (4) ◽  
pp. 473-484 ◽  
Author(s):  
C. Rousseau ◽  
B. Toni

AbstractIn this paper we study the local bifurcation of critical periods of periodic orbits in the neighborhood of a nondegenerate centre of a vector field with a homogeneous nonlinearity of the third degree. We show that at most three local critical periods bifurcate from a weak linear centre of finite order or from the linear isochrone and at most two local critical periods from the nonlinear isochrone. Moreover, in both cases, there are perturbations with the maximum number of critical periods.


2017 ◽  
Vol 4 (1) ◽  
pp. 43-72 ◽  
Author(s):  
Martin de Borbon

Abstract The goal of this article is to provide a construction and classification, in the case of two complex dimensions, of the possible tangent cones at points of limit spaces of non-collapsed sequences of Kähler-Einstein metrics with cone singularities. The proofs and constructions are completely elementary, nevertheless they have an intrinsic beauty. In a few words; tangent cones correspond to spherical metrics with cone singularities in the projective line by means of the Kähler quotient construction with respect to the S1-action generated by the Reeb vector field, except in the irregular case ℂβ₁×ℂβ₂ with β₂/ β₁ ∉ Q.


Author(s):  
Shahriar Aslani ◽  
Patrick Bernard

Abstract In the study of Hamiltonian systems on cotangent bundles, it is natural to perturb Hamiltonians by adding potentials (functions depending only on the base point). This led to the definition of Mañé genericity [ 8]: a property is generic if, given a Hamiltonian $H$, the set of potentials $g$ such that $H+g$ satisfies the property is generic. This notion is mostly used in the context of Hamiltonians that are convex in $p$, in the sense that $\partial ^2_{pp} H$ is positive definite at each point. We will also restrict our study to this situation. There is a close relation between perturbations of Hamiltonians by a small additive potential and perturbations by a positive factor close to one. Indeed, the Hamiltonians $H+g$ and $H/(1-g)$ have the same level one energy surface, hence their dynamics on this energy surface are reparametrisation of each other, this is the Maupertuis principle. This remark is particularly relevant when $H$ is homogeneous in the fibers (which corresponds to Finsler metrics) or even fiberwise quadratic (which corresponds to Riemannian metrics). In these cases, perturbations by potentials of the Hamiltonian correspond, up to parametrisation, to conformal perturbations of the metric. One of the widely studied aspects is to understand to what extent the return map associated to a periodic orbit can be modified by a small perturbation. This kind of question depends strongly on the context in which they are posed. Some of the most studied contexts are, in increasing order of difficulty, perturbations of general vector fields, perturbations of Hamiltonian systems inside the class of Hamiltonian systems, perturbations of Riemannian metrics inside the class of Riemannian metrics, and Mañé perturbations of convex Hamiltonians. It is for example well known that each vector field can be perturbed to a vector field with only hyperbolic periodic orbits, this is part of the Kupka–Smale Theorem, see [ 5, 13] (the other part of the Kupka–Smale Theorem states that the stable and unstable manifolds intersect transversally; it has also been studied in the various settings mentioned above but will not be discussed here). In the context of Hamiltonian vector fields, the statement has to be weakened, but it remains true that each Hamiltonian can be perturbed to a Hamiltonian with only non-degenerate periodic orbits (including the iterated ones), see [ 11, 12]. The same result is true in the context of Riemannian metrics: every Riemannian metric can be perturbed to a Riemannian metric with only non-degenerate closed geodesics, this is the bumpy metric theorem, see [ 1, 2, 4]. The question was investigated only much more recently in the context of Mañé perturbations of convex Hamiltonians, see [ 9, 10]. It is proved in [ 10] that the same result holds: if $H$ is a convex Hamiltonian and $a$ is a regular value of $H$, then there exist arbitrarily small potentials $g$ such that all periodic orbits (including iterated ones) of $H+g$ at energy $a$ are non-degenerate. The proof given in [ 10] is actually rather similar to the ones given in papers on the perturbations of Riemannian metrics. In all these proofs, it is very useful to work in appropriate coordinates around an orbit segment. In the Riemannian case, one can use the so-called Fermi coordinates. In the Hamiltonian case, appropriate coordinates are considered in [ 10,Lemma 3.1] itself taken from [ 3, Lemma C.1]. However, as we shall detail below, the proof of this Lemma in [ 3], Appendix C, is incomplete, and the statement itself is actually wrong. Our goal in the present paper is to state and prove a corrected version of this normal form Lemma. Our proof is different from the one outlined in [ 3], Appendix C. In particular, it is purely Hamiltonian and does not rest on the results of [ 7] on Finsler metrics, as [ 3] did. Although our normal form is weaker than the one claimed in [ 10], it is actually sufficient to prove the main results of [ 6, 10], as we shall explain after the statement of Theorem 1, and probably also of the other works using [ 3, Lemma C.1].


Sign in / Sign up

Export Citation Format

Share Document