scholarly journals SELF-ORGANIZING, TWO-TEMPERATURE ISING MODEL DESCRIBING HUMAN SEGREGATION

2008 ◽  
Vol 19 (03) ◽  
pp. 393-398 ◽  
Author(s):  
GÉZA ÓDOR

A two-temperature Ising-Schelling model is introduced and studied for describing human segregation. The self-organized Ising model with Glauber kinetics simulated by Müller et al. exhibits a phase transition between segregated and mixed phases mimicking the change of tolerance (local temperature) of individuals. The effect of external noise is considered here as a second temperature added to the decision of individuals who consider a change of accommodation. A numerical evidence is presented for a discontinuous phase transition of the magnetization.

Author(s):  
Alexander Mozalev ◽  
Zdenek Pytlicek ◽  
Kirill Kamnev ◽  
Jan Prasek ◽  
Francesc Gispert-Guirado ◽  
...  

A combination of frontier formation conditions, paradoxical oxide growth, unique ionic transport, a mixed-oxide composition, and phase transition effects resulted in arrays of novel self-assembled zirconium-oxide nanostructures.


2008 ◽  
Vol 19 (03) ◽  
pp. 385-391 ◽  
Author(s):  
KATHARINA MÜLLER ◽  
CHRISTIAN SCHULZE ◽  
DIETRICH STAUFFER

The Schelling model of 1971 is a complicated version of a square-lattice Ising model at zero temperature, to explain urban segregation, based on the neighbor preferences of the residents, without external reasons. Various versions between Ising and Schelling models give about the same results. Inhomogeneous "temperatures" T do not change the results much, while a feedback between segregation and T leads to a self-organization of an average T.


2019 ◽  
Author(s):  
Sina Khajehabdollahi ◽  
Pubuditha M. Abeyasinghe ◽  
Adrian M. Owen ◽  
Andrea Soddu

AbstractUsing the critical Ising model of the brain, integrated information as a measure of consciousness is measured in toy models of generic neural networks. Monte Carlo simulations are run on 159 random weighted networks analogous to small 5-node neural network motifs. The integrated information generated by this sample of small Ising models is measured across the model parameter space. It is observed that integrated information, as a type of order parameter not unlike a concept like magnetism, undergoes a phase transition at the critical point in the model. This critical point is demarcated by the peaks of the generalized susceptibility of integrated information, a point where the ‘consciousness’ of the system is maximally susceptible to perturbations and on the boundary between an ordered and disordered form. This study adds further evidence to support that the emergence of consciousness coincides with the more universal patterns of self-organized criticality, evolution, the emergence of complexity, and the integration of complex systems.Author summaryUnderstanding consciousness through a scientific and mathematical language is slowly coming into reach and so testing and grounding these emerging ideas onto empirical observations and known systems is a first step to properly framing this ancient problem. This paper in particular explores the Integrated Information Theory of Consciousness framed within the physics of the Ising model to understand how and when consciousness, or integrated information, can arise in simple dynamical systems. The emergence of consciousness is treated like the emergence of other classical macroscopic observables in physics such as magnetism and understood as a dynamical phase of matter. Our findings show that the sensitivity of consciousness in a complex system is maximized when the system is undergoing a phase transition, also known as a critical point. This result, combined with a body of evidence highlighting the privelaged state of critical systems suggests that, like many other complex phenomenon, consciousness may simply follow from/emerge out of the tendency of a system to self-organize to criticality.


2012 ◽  
Vol 22 (1) ◽  
pp. 133-145 ◽  
Author(s):  
KONSTANTINOS PANAGIOTOU ◽  
RETO SPÖHEL ◽  
ANGELIKA STEGER ◽  
HENNING THOMAS

The study of the phase transition of random graph processes, and recently in particular Achlioptas processes, has attracted much attention. Achlioptas, D'Souza and Spencer (Science, 2009) gave strong numerical evidence that a variety of edge-selection rules in Achlioptas processes exhibit a discontinuous phase transition. However, Riordan and Warnke (Science, 2011) recently showed that all these processes have a continuous phase transition.In this work we prove discontinuous phase transitions for three random graph processes: all three start with the empty graph on n vertices and, depending on the process, we connect in every step (i) one vertex chosen randomly from all vertices and one chosen randomly from a restricted set of vertices, (ii) two components chosen randomly from the set of all components, or (iii) a randomly chosen vertex and a randomly chosen component.


2019 ◽  
Vol 42 ◽  
Author(s):  
Lucio Tonello ◽  
Luca Giacobbi ◽  
Alberto Pettenon ◽  
Alessandro Scuotto ◽  
Massimo Cocchi ◽  
...  

AbstractAutism spectrum disorder (ASD) subjects can present temporary behaviors of acute agitation and aggressiveness, named problem behaviors. They have been shown to be consistent with the self-organized criticality (SOC), a model wherein occasionally occurring “catastrophic events” are necessary in order to maintain a self-organized “critical equilibrium.” The SOC can represent the psychopathology network structures and additionally suggests that they can be considered as self-organized systems.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 173
Author(s):  
Marina Kurbasic ◽  
Ana M. Garcia ◽  
Simone Viada ◽  
Silvia Marchesan

Bioactive hydrogels based on the self-assembly of tripeptides have attracted great interest in recent years. In particular, the search is active for sequences that are able to mimic enzymes when they are self-organized in a nanostructured hydrogel, so as to provide a smart catalytic (bio)material whose activity can be switched on/off with assembly/disassembly. Within the diverse enzymes that have been targeted for mimicry, hydrolases find wide application in biomaterials, ranging from their use to convert prodrugs into active compounds to their ability to work in reverse and catalyze a plethora of reactions. We recently reported the minimalistic l-His–d-Phe–d-Phe for its ability to self-organize into thermoreversible and biocatalytic hydrogels for esterase mimicry. In this work, we analyze the effects of terminus modifications that mimic the inclusion of the tripeptide in a longer sequence. Therefore, three analogues, i.e., N-acetylated, C-amidated, or both, were synthesized, purified, characterized by several techniques, and probed for self-assembly, hydrogelation, and esterase-like biocatalysis. This work provides useful insights into how chemical modifications at the termini affect self-assembly into biocatalytic hydrogels, and these data may become useful for the future design of supramolecular catalysts for enhanced performance.


Sign in / Sign up

Export Citation Format

Share Document