COMBINED CELLULAR AUTOMATON MODEL FOR MIXED TRAFFIC FLOW WITH NON-MOTORIZED VEHICLES

2010 ◽  
Vol 21 (12) ◽  
pp. 1443-1455 ◽  
Author(s):  
DONG-FAN XIE ◽  
ZI-YOU GAO ◽  
XIAO-MEI ZHAO

To depict the mixed traffic flow consisting of motorized (m-) and non-motorized (nm-) vehicles, a new cellular automaton model is proposed by combining the NaSch model and the BCA model, and some rules are also introduced to depict the interaction between m-vehicles and nm-vehicles. By numerical simulations, the flux-density relations are investigated in detail. It can be found that the flux-density curves of m-vehicle flow can be classified into two types, corresponding to small and large density regions of nm-vehicles, respectively. In small density region of nm-vehicles, the maximum flux as well as the critical density decreases with the increase of nm-vehicle density. Similar characteristics can also be found in large density region of nm-vehicles. However, compared with the former case, the maximum flux is much lower, the phase transition from free flow to congested flow becomes continuous and thus the corresponding critical points are non-existent. The flux-density curves of nm-vehicle flow can also be classified into two types. And interestingly, the maximum flux and the corresponding density decrease first and keep constant later as the density of m-vehicle increases. Finally, the total transport capacity of the system is investigated. The results show that the maximum capacity can be reached at appropriate proportions for m-vehicles and nm-vehicles, which induces a controlling method to promote the capacity of mixed traffic flow.

2007 ◽  
Vol 380 ◽  
pp. 470-480 ◽  
Author(s):  
Jian-ping Meng ◽  
Shi-qiang Dai ◽  
Li-yun Dong ◽  
Jie-fang Zhang

2020 ◽  
Vol 537 ◽  
pp. 122686 ◽  
Author(s):  
Xue Wang ◽  
Yu Xue ◽  
Bing-ling Cen ◽  
Peng Zhang ◽  
Hong-di He

2013 ◽  
Vol 27 (08) ◽  
pp. 1350052 ◽  
Author(s):  
HAN-TAO ZHAO ◽  
HONG-YAN MAO ◽  
RUI-JIN HUANG

Two kinds of cellular automaton models are proposed for mixed traffic flow with emphasis on emergency vehicles. By analyzing the characteristics of ordinary vehicles in giving way to emergency vehicles, the rules for changing lanes are modified. Computer numerical simulation results indicate that an emergency vehicle without changing lanes can enhance speed with density lower than 0.1, while its speed can be enhanced by changing lane with density greater than 0.1. Meanwhile, vehicle speed and density within a certain range around emergency vehicles are lower than the road section average velocity and average density. The passage way of emergency vehicle that facilitate lane change causes less interference than that of an emergency vehicle which is unable to change lane. The study found that the physical characteristics of traffic flow when there are emergency vehicles are significantly different from routine traffic flow. Emergency vehicles can facilitate their passage by changing lanes at a medium or high density.


2012 ◽  
Vol 241-244 ◽  
pp. 2082-2087
Author(s):  
Li Yang ◽  
Jun Hui Hu ◽  
Ling Jiang Kong

Based on the two-dimension cellular automaton traffic flow model (BML model), a mixed traffic flow model for urban traffic considering the transit traffic is established in this paper. Under the don't block the box rules and the opening boundary conditions, the impacts of transit traffic, the central station, traffic lights cycle, the vehicles length on the mixed traffic flow is studied by computer simulation. Some important characters appearing in the new model are also elucidated. It shows that traffic flow is closely related to traffic lights cycle, the geometric structure of transport network and boundary conditions. Under certain traffic light cycle time, the traffic flow has a periodical oscillation change. The comparison to practical measured data shows that our stimulation results are accordant with the changes of real traffic flow, which confirms the accuracy and rationality of our model.


2012 ◽  
Vol 178-181 ◽  
pp. 1782-1785
Author(s):  
Ke Zhao Bai ◽  
Li Yang ◽  
Jian Huang ◽  
Rong Sen Zheng ◽  
Hua Kuang

Based on the NaSch model, an extended cellular automaton model is proposed to simulate traffic flow by considering the effects of visibility. Under the open boundary condition, the influences of the injection probability, disappearance probability and visibility are discussed. The simulation results show that the injection probability and disappearance probability within a certain range have an important effect on the flux, density and velocity. And traffic jams often occur in poor visibility areas, which can become a road bottleneck. Furthermore, in order to effectively decrease the occurrence of traffic jams, the injection probability and disappearance probability should be set up reasonably.


2015 ◽  
Vol 26 (01) ◽  
pp. 1550007 ◽  
Author(s):  
R. Marzoug ◽  
H. Ez-Zahraouy ◽  
A. Benyoussef

Using cellular automata (CA) Nagel–Schreckenberg (NaSch) model, we numerically study the probability P ac of the occurrence of car accidents at nonsignalized intersection when drivers do not respect the priority rules. We also investigated the impact of mixture lengths and velocities of vehicles on this probability. It is found that in the first case, where vehicles distinguished only by their lengths, the car accidents start to occur above a critical density ρc. Furthermore, the increase of the fraction of long vehicles (FL) delays the occurrence of car accidents (increasing ρc) and increases the risk of collisions when ρ > ρc. In other side, the mixture of maximum velocities (with same length for all vehicles) leads to the appearance of accidents at the intersection even in the free flow regime. Moreover, the increase of the fraction of fast vehicles (Ff) reduces the accident probability (P ac ). The influence of roads length is also studied. We found that the decrease of the roads length enhance the risk of collision.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yunxuan Li ◽  
Zeyang Cheng ◽  
Jian Lu ◽  
Lin Zhang

The vehicle nonstrict priority give-way behavior (VNPGWB) is a common part of traffic interaction between motorized and nonmotorized vehicles in many countries. This study proposes a mixed-flow cellular automaton model to simulate the passing of vehicles in front of bicycles at crosswalks. The mixed-flow model combines a vehicle model with a bicycle model, using nonstrict priority give-way and strict give-way two driving behaviors defined as relating to the decision point rule and the launching rule, respectively. Simulation results showed that as the vehicle and bicycle inflow rates increased, a critical inflow rate divided vehicle and bicycle traffic flow into free flow and saturated flow conditions. The values of vehicle saturation flow decreased from 0.34 to 0.05, and the values of bicycle saturation flow decreased from 0.54 to 0.44, indicating that the mixed traffic flow has a negative effect on vehicle and bicycle saturated flow. Results also showed that VNPGWB effectively improves vehicle saturation flow over that of the strict give way. The advantage of VNPGWB is more significant when vehicles and bicycles are in saturation traffic flow.


Sign in / Sign up

Export Citation Format

Share Document