CHAOTIC SYNCHRONIZATION OF FRACTIONAL-ORDER SPATIOTEMPORAL COUPLED LORENZ SYSTEM

2012 ◽  
Vol 23 (10) ◽  
pp. 1250067 ◽  
Author(s):  
XING-YUAN WANG ◽  
HAO ZHANG

By utilizing the fractional calculus techniques and spatiotemporal chaos theory, this paper brings Lorenz system to fractional-order spatiotemporal coupled differential equation for the first time, and proposes the fractional-order spatiotemporal coupled Lorenz system. Based on that, we study the problem of chaotic synchronization of fractional-order spatiotemporal coupled Lorenz systems, design the linear controller and nonlinear controller by utilizing the Lyapunov stability theory and prove the correctness in theory. The numerical simulation results demonstrate the validity of controllers in high-dimension fractional-order spatiotemporal coupled Lorenz system.

Author(s):  
Xing-Yuan Wang ◽  
Hao Zhang

Based on the classic Lorenz system, this paper studies the problem of bivariate module-phase synchronizations in a fractional-order Lorenz system, bivariate module-phase synchronizations in a fractional-order spatiotemporal coupled Lorenz system, and malposed module-phase synchronization in a fractional-order spatiotemporal coupled Lorenz system. It is the first time, to our knowledge, that module-phase synchronization in fractional-order high-dimensional systems is applied. According to the fractional calculus techniques and spatiotemporal theory, we design controllers and achieve synchronizations both in module space and phase space at the same time. In the simulation, we discuss the bivariate module-phase synchronization and malposed module-phase synchronization. The numerical simulation results demonstrate the validity of controllers.


2009 ◽  
Vol 23 (31) ◽  
pp. 5769-5777 ◽  
Author(s):  
XINGYUAN WANG ◽  
YIJIE HE

This paper studies the problem of chaotic synchronization of the fractional-order modified coupled dynamos system, designs the activate controllers, and then proves that the self-synchronization of the fractional-order modified coupled dynamos system and the fractional-order modified coupled dynamos system's different structure synchronization with the fractional-order Lorenz system can both arrive theoretically. The simulation results demonstrate the validity of the activate controller.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
A. G. Radwan ◽  
K. Moaddy ◽  
I. Hashim

This paper presents a general synchronization technique and an amplitude modulation of chaotic generators. Conventional synchronization and antisynchronization are considered a very narrow subset from the proposed technique where the scale between the output response and the input response can be controlled via control functions and this scale may be either constant (positive, negative) or time dependent. The concept of the proposed technique is based on the nonlinear control theory and Lyapunov stability theory. The nonlinear controller is designed to ensure the stability and convergence of the proposed synchronization scheme. This technique is applied on the synchronization of two identical fractional-order Chua's circuit systems with memristor. Different examples are studied numerically with different system parameters, different orders, and with five alternative cases where the scaling functions are chosen to be positive/negative and constant/dynamic which covers all possible cases from conventional synchronization to the amplitude modulation cases to validate the proposed concept.


2011 ◽  
Vol 138-139 ◽  
pp. 404-409 ◽  
Author(s):  
Heng Li ◽  
Jin Yong Yu ◽  
You An Zhang

With respect to aircraft with redundant multiple control effectors, a nonlinear controller, which is composed of a virtual control law and a dynamic control allocation with position constraints of each effector, is designed. Based on Lyapunov stability theory and LaSalle invariant set theorem, asymptotic stabilities of upper control subsystem, dynamic control allocation subsystem and overall closed-loop system are proved respectively. Simulation results show the effectiveness of the proposed method.


2012 ◽  
Vol 22 (04) ◽  
pp. 1250088 ◽  
Author(s):  
YONG XU ◽  
RENCAI GU ◽  
HUIQING ZHANG ◽  
DONGXI LI

This paper aims to investigate the phenomenon of Diffusionless Lorenz system with fractional-order. We discuss the stability of equilibrium points of the fractional-order system theoretically, and analyze the chaotic behaviors and typical bifurcations numerically. We find rich dynamics in fractional-order Diffusionless Lorenz system with appropriate fractional order and system parameters. Besides, the control problem of fractional-order Diffusionless Lorenz system is examined using feedback control technique, and simulation results show the effectiveness of the method.


Author(s):  
G. Velmurugan ◽  
R. Rakkiyappan

Time delays are frequently appearing in many real-life phenomena and the presence of time delays in chaotic systems enriches its complexities. The analysis of fractional-order chaotic real nonlinear systems with time delays has a plenty of interesting results but the research on fractional-order chaotic complex nonlinear systems with time delays is in the primary stage. This paper studies the problem of hybrid projective synchronization (HPS) of fractional-order chaotic complex nonlinear systems with time delays. HPS is one of the extensions of projective synchronization, in which different state vectors can be synchronized up to different scaling factors. Based on Laplace transformation and the stability theory of linear fractional-order systems, a suitable nonlinear controller is designed to achieve synchronization between the master and slave fractional-order chaotic complex nonlinear systems with time delays in the sense of HPS with different scaling factors. Finally, the HPS between fractional-order delayed complex Lorenz system and fractional-order delayed complex Chen system and that of fractional-order delayed complex Lorenz system and fractional-order delayed complex Lu system are taken into account to demonstrate the effectiveness and feasibility of the proposed HPS techniques in the numerical example section.


2014 ◽  
Vol 602-605 ◽  
pp. 946-949
Author(s):  
Jing Fang ◽  
Ruo Xun Zhang

This paper investigates the synchronization of incommensurate fractional-order chaotic systems, and proposes a modified adaptive-feedback controller for fractional-order chaos synchronization based on Lyapunov stability theory, fractional order differential inequality and adaptive control theory. This synchronization approach that is simple, global and theoretically rigorous enables synchronization of fractional-order chaotic systems be achieved in a systematic way. Simulation results for a fractional-order chaotic system is provided to illustrate the effectiveness of the proposed scheme.


2013 ◽  
Vol 846-847 ◽  
pp. 1252-1256 ◽  
Author(s):  
Zhi Hao Zhang ◽  
Hong Yao ◽  
Bo Yu Feng ◽  
Xing Zhao Peng ◽  
Chao Ding

This paper aimed at the chaotic synchronization ability of complex networks with different structures whose nodes have different orders. Problems of complex network synchronization and biological application are introduced firstly. And then, we studied synchronization with different orders and different network structures. Based on Lyapunov stability theory, the coupling function of the connecting nodes synchronization is identified. Numerical simulation results were used to compare the synchronization ability of three kinds of network structures. So, certain biological phenomena of complex network can be explained due to our research.


2009 ◽  
Vol 23 (17) ◽  
pp. 2167-2178 ◽  
Author(s):  
TIANSHU WANG ◽  
XINGYUAN WANG

In this paper, a type of new fractional order hyperchaotic Lorenz system is proposed. Based on the fractional calculus predictor-corrector algorithm, the fractional order hyperchaotic Lorenz system is investigated numerically, and the simulation results show that the lowest orders for hyperchaos in hyperchaotic Lorenz system is 3.884. According to the stability theory of fractional order system, an improved state-observer is designed, and the response system of generalized synchronization is obtained analytically, whose feasibility is proved theoretically. The synchronization method is adopted to realize the generalized synchronization of 3.884-order hyperchaotic Lorenz system, and the numerical simulation results verify the effectiveness.


2011 ◽  
Vol 25 (32) ◽  
pp. 4563-4571 ◽  
Author(s):  
XINGYUAN WANG ◽  
YAQIN WANG

This paper studies the generalized synchronization of hyperchaos systems, and a new method, by which adaptive generalized synchronization of chaotic systems with a kind of linear and nonlinear relationship between the drive and response systems can be achieved, is proposed. This new method has more extensive application scope. Based on the Lyapunov stability theory, the correctness of the proposed scheme is strictly demonstrated. It is also illustrated by applications to hyperchaotic Chen system and hyperchaotic Lorenz system and the simulation results show the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document