FINITE-TIME SYNCHRONIZATION OF DYNAMICAL NETWORKS COUPLED WITH COMPLEX-VARIABLE CHAOTIC SYSTEMS

2013 ◽  
Vol 24 (09) ◽  
pp. 1350058 ◽  
Author(s):  
ZHAOYAN WU ◽  
QINGLING YE ◽  
DANFENG LIU

In this paper, finite-time synchronization of dynamical networks coupled with complex-variable chaotic systems is investigated. According to Lyapunov function method and finite-time stability theory, both the dynamical networks without and with coupling delay are considered through designing proper finite-time controllers. Several sufficient conditions for finite-time synchronization are derived and verified to be effective by some numerical examples.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Ahmadjan Muhammadhaji ◽  
Abdujelil Abdurahman ◽  
Haijun Jiang

In this paper, we investigated the finite-time synchronization (FTS) problem for a class of time-delayed complex networks with nonidentical nodes onto any uniformly smooth state. By employing the finite-time stability theorem and designing two types of novel controllers, we obtained some simple sufficient conditions for the FTS of addressed complex networks. Furthermore, we also analyzed the effects of control variables on synchronization performance. Finally, we showed the effectiveness and feasibility of our methods by giving two numerical examples.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Cong Zheng ◽  
Jinde Cao

This paper investigates finite-time synchronization of the singular hybrid coupled networks. The singular systems studied in this paper are assumed to be regular and impulse-free. Some sufficient conditions are derived to ensure finite-time synchronization of the singular hybrid coupled networks under a state feedback controller by using finite-time stability theory. A numerical example is finally exploited to show the effectiveness of the obtained results.


Author(s):  
Yongjian Liu ◽  
Lijie Li ◽  
Yu Feng

The finite-time synchronization for the high-dimensional chaotic system is studied. A method is derived from the finite-time stability theory and adaptive control technique. To show the wider applicability of our method, an illustration is given using four-dimensional (4D) hyperchaotic systems. Numerical simulations are also used to verify the effectiveness of the technique. Then, the synchronization is applied to secure communication through chaos masking. Simulation results show that the two high-dimensional chaotic systems can realize monotonous synchronization, and the information signal, which is masked, can be recovered undistortedly.


Automatica ◽  
2021 ◽  
Vol 125 ◽  
pp. 109427
Author(s):  
Konstantin Zimenko ◽  
Denis Efimov ◽  
Andrey Polyakov ◽  
Artem Kremlev

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Wenhua Gao ◽  
Feiqi Deng ◽  
Ruiqiu Zhang ◽  
Wenhui Liu

This paper studies the problem of finite-timeH∞control for time-delayed Itô stochastic systems with Markovian switching. By using the appropriate Lyapunov-Krasovskii functional and free-weighting matrix techniques, some sufficient conditions of finite-time stability for time-delayed stochastic systems with Markovian switching are proposed. Based on constructing new Lyapunov-Krasovskii functional, the mode-dependent state feedback controller for the finite-timeH∞control is obtained. Simulation results illustrate the effectiveness of the proposed method.


2021 ◽  
pp. 1-14
Author(s):  
Zhenjie Wang ◽  
Wenxia Cui ◽  
Wenbin Jin

This paper mainly considers the finite-time synchronization problem of fuzzy inertial cellular neural networks (FICNNs) with time-varying delays. By constructing the suitable Lyapunov functional, and using integral inequality techniques, several sufficient criteria have been proposed to ensure the finite-time synchronization for the addressed (FICNNs). Without applying the known finite-time stability theorem, which is widely used to solve the finite-time synchronization problems for (FICNNs). In this paper, the proposed method is relatively convenient to solve finite-time synchronization problem of the addressed system, this paper extends the research works on the finite-time synchronization of (FICNNs). Finally, numerical simulations illustrated verify the effectiveness of the proposed results.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Cui Yan ◽  
He Hongjun ◽  
Lu Chenhui ◽  
Sun Guan

Fractional order systems have a wider range of applications. Hidden attractors are a peculiar phenomenon in nonlinear systems. In this paper, we construct a fractional-order chaotic system with hidden attractors based on the Sprott C system. According to the Adomain decomposition method, we numerically simulate from several algorithms and study the dynamic characteristics of the system through bifurcation diagram, phase diagram, spectral entropy, and C0 complexity. The results of spectral entropy and C0 complexity simulations show that the system is highly complex. In order to apply such research results to engineering practice, for such fractional-order chaotic systems with hidden attractors, we design a controller to synchronize according to the finite-time stability theory. The simulation results show that the synchronization time is short and the robustness is stable. This paper lays the foundation for the study of fractional order systems with hidden attractors.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Chao Ma ◽  
Yujuan Tian ◽  
Zhongfeng Qu

In this paper, we make an exploration of a technique to control a class of finance chaotic systems. This technique allows one to achieve the finite time stability of the finance system more effectively with less control input energy. First, the finite time stability of three dimension finance system without market confidence is analyzed by using a single controller. Then, two controllers are designed to stabilize the four-dimension finance system with market confidence. Moreover, the finite time stability of the three-dimension and four-dimension finance system with unknown parameter is also studied. Finally, simulation results are presented to show the chaotic behaviour of the finance systems, verify the effectiveness of the proposed control method, and illustrate its advantages compared with other methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Wuneng Zhou ◽  
Anding Dai ◽  
Dongbing Tong ◽  
Jun Yang

This paper investigates the exponential synchronization problem of stochastic complex dynamical networks with impulsive perturbation and Markovian switching. The complex dynamical networks consist ofκmodes, and the networks switch from one mode to another according to a Markovian chain with known transition probability. Based on the Lyapunov function method and stochastic analysis, by employingM-matrix approach, some sufficient conditions are presented to ensure the exponential synchronization of stochastic complex dynamical networks with impulsive perturbation and Markovian switching, and the upper bound of impulsive gain is evaluated. At the end of this paper, two numerical examples are included to show the effectiveness of our results.


Sign in / Sign up

Export Citation Format

Share Document