Air quality analysis of Sichuan province based on complex network and CSP algorithm

Author(s):  
Xiao Li Huang ◽  
Si Yu Hu ◽  
Jing Xian Chen ◽  
Wan Qi Feng

The air quality is directly related to people’s lives. This paper selects air quality data of Sichuan Province as the research object, and explores the inherent characteristics of air quality from the perspective of complex network theory. First, based on the complexity of network topology and nodes, a community detection algorithm which combines the clustering idea with principal component analysis (PCA) algorithm and self-organization competitive neural network (SOM) is designed (CSP). Compared with the classic community detection algorithm, the result proves that the CSP algorithm can accurately dig out a better community structure. Second, based on the strong correlation distance and strong correlation coefficient of the air quality network, the Sichuan Air Quality Complex Network (SCCN) was constructed. The SCCN is divided into five communities using the CSP algorithm. Combining the characteristics of each community and the Hurst coefficient, it is found that the air quality inside the community has long-term memory. Finally, based on the idea of time-dependent cross-correlation, this paper analyzes the cross-correlation of AQI time series of different stations in each community, constructs a directed air quality cross-correlation network combined with complex network theory, and locates the important pollution sources in each region of Sichuan Province according to the topological structure of the network. The work of this paper can provide the corresponding theoretical support and guidance for the current environmental pollution control.

2013 ◽  
Vol 291-294 ◽  
pp. 2204-2211
Author(s):  
Xing Hua Wang ◽  
Ze Xiang Cai

Conventional network partition and pilot nodes selection methods for reactive power / voltage control are mainly based on the reactive power - voltage sensitivity, however, it is hard to regulate the balance of the reactive power in partitions and pilot nodes may over-concentrate in some regions. According to the community detection algorithm in complex network theory, an improved community modular index is proposed with the consideration of the reactive power balance degree in partitions, while the power grid is modeled as the weighted network with similarity weight. By introducing the concept of vertex degree and betweenness, a novel pilot nodes selection index is presented , which is based on the ranking of observability and controllability sensitivity and can evaluate the centrality and connection density of node. Applying the proposed index and method to IEEE 39-bus system, simulation results show the effectiveness.


2021 ◽  
pp. 1-12
Author(s):  
JinFang Sheng ◽  
Huaiyu Zuo ◽  
Bin Wang ◽  
Qiong Li

 In a complex network system, the structure of the network is an extremely important element for the analysis of the system, and the study of community detection algorithms is key to exploring the structure of the complex network. Traditional community detection algorithms would represent the network using an adjacency matrix based on observations, which may contain redundant information or noise that interferes with the detection results. In this paper, we propose a community detection algorithm based on density clustering. In order to improve the performance of density clustering, we consider an algorithmic framework for learning the continuous representation of network nodes in a low-dimensional space. The network structure is effectively preserved through network embedding, and density clustering is applied in the embedded low-dimensional space to compute the similarity of nodes in the network, which in turn reveals the implied structure in a given network. Experiments show that the algorithm has superior performance compared to other advanced community detection algorithms for real-world networks in multiple domains as well as synthetic networks, especially when the network data chaos is high.


2015 ◽  
Vol 19 (7) ◽  
pp. 3301-3318 ◽  
Author(s):  
M. J. Halverson ◽  
S. W. Fleming

Abstract. Network theory is applied to an array of streamflow gauges located in the Coast Mountains of British Columbia (BC) and Yukon, Canada. The goal of the analysis is to assess whether insights from this branch of mathematical graph theory can be meaningfully applied to hydrometric data, and, more specifically, whether it may help guide decisions concerning stream gauge placement so that the full complexity of the regional hydrology is efficiently captured. The streamflow data, when represented as a complex network, have a global clustering coefficient and average shortest path length consistent with small-world networks, which are a class of stable and efficient networks common in nature, but the observed degree distribution did not clearly indicate a scale-free network. Stability helps ensure that the network is robust to the loss of nodes; in the context of a streamflow network, stability is interpreted as insensitivity to station removal at random. Community structure is also evident in the streamflow network. A network theoretic community detection algorithm identified separate communities, each of which appears to be defined by the combination of its median seasonal flow regime (pluvial, nival, hybrid, or glacial, which in this region in turn mainly reflects basin elevation) and geographic proximity to other communities (reflecting shared or different daily meteorological forcing). Furthermore, betweenness analyses suggest a handful of key stations which serve as bridges between communities and might be highly valued. We propose that an idealized sampling network should sample high-betweenness stations, small-membership communities which are by definition rare or undersampled relative to other communities, and index stations having large numbers of intracommunity links, while retaining some degree of redundancy to maintain network robustness.


2020 ◽  
Vol 13 (4) ◽  
pp. 542-549
Author(s):  
Smita Agrawal ◽  
Atul Patel

Many real-world social networks exist in the form of a complex network, which includes very large scale networks with structured or unstructured data and a set of graphs. This complex network is available in the form of brain graph, protein structure, food web, transportation system, World Wide Web, and these networks are sparsely connected, and most of the subgraphs are densely connected. Due to the scaling of large scale graphs, efficient way for graph generation, complexity, the dynamic nature of graphs, and community detection are challenging tasks. From large scale graph to find the densely connected subgraph from the complex network, various community detection algorithms using clustering techniques are discussed here. In this paper, we discussed the taxonomy of various community detection algorithms like Structural Clustering Algorithm for Networks (SCAN), Structural-Attribute based Cluster (SA-cluster), Community Detection based on Hierarchical Clustering (CDHC), etc. In this comprehensive review, we provide a classification of community detection algorithm based on their approach, dataset used for the existing algorithm for experimental study and measure to evaluate them. In the end, insights into the future scope and research opportunities for community detection are discussed.


2015 ◽  
Vol 29 (13) ◽  
pp. 1550078 ◽  
Author(s):  
Mingwei Leng ◽  
Liang Huang ◽  
Longjie Li ◽  
Hanhai Zhou ◽  
Jianjun Cheng ◽  
...  

Semisupervised community detection algorithms use prior knowledge to improve the performance of discovering the community structure of a complex network. However, getting those prior knowledge is quite expensive and time consuming in many real-world applications. This paper proposes an active semisupervised community detection algorithm based on the similarities between nodes. First, it transforms a given complex network into a weighted directed network based on the proposed asymmetric similarity method, some informative nodes are selected to be the labeled nodes by using an active mechanism. Second, the proposed algorithm discovers the community structure of a complex network by propagating the community labels of labeled nodes to their neighbors based on the similarity between a node and a community. Finally, the performance of the proposed algorithm is evaluated with three real networks and one synthetic network and the experimental results show that the proposed method has a better performance compared with some other community detection algorithms.


2016 ◽  
Vol 46 (4) ◽  
pp. 431-444
Author(s):  
Zhongming HAN ◽  
Xusheng TAN ◽  
Yan CHEN ◽  
Dagao DUAN

Sign in / Sign up

Export Citation Format

Share Document