Fault-Tolerant Maximal Local-Edge-Connectivity of Augmented Cubes

2020 ◽  
Vol 30 (03) ◽  
pp. 2040001
Author(s):  
Liyang Zhai ◽  
Liqiong Xu ◽  
Weihua Yang

An interconnection network is usually modeled as a graph, in which vertices and edges correspond to processors and communication links, respectively. Connectivity is an important metric for fault tolerance of interconnection networks. A connected graph [Formula: see text] is said to be maximally local-edge-connected if each pair of vertices [Formula: see text] and [Formula: see text] of [Formula: see text] are connected by [Formula: see text] pairwise edge-disjoint paths. In this paper, we show that the [Formula: see text]-dimensional augmented cube [Formula: see text] is [Formula: see text]-edge-fault-tolerant maximally local-edge-connected and the bound [Formula: see text] is sharp; under the restricted condition that each vertex has at least three fault-free adjacent vertices, [Formula: see text] is [Formula: see text]-edge-fault-tolerant maximally local-edge-connected and the bound [Formula: see text] is sharp; and under the restricted condition that each vertex has at least [Formula: see text] fault-free adjacent vertices, [Formula: see text] is [Formula: see text]-edge-fault-tolerant maximally local-edge-connected. Furthermore, we show that a [Formula: see text]-regular graph [Formula: see text] is [Formula: see text]-fault-tolerant one-to-many maximally local-connected if [Formula: see text] does not contain [Formula: see text] and is super [Formula: see text]-vertex-connected of order 1, a [Formula: see text]-regular graph [Formula: see text] is [Formula: see text]-fault-tolerant one-to-many maximally local-connected if [Formula: see text] does not contain [Formula: see text] and is super [Formula: see text]-vertex-connected of order 1.

2019 ◽  
Vol 30 (08) ◽  
pp. 1301-1315 ◽  
Author(s):  
Liqiong Xu ◽  
Shuming Zhou ◽  
Weihua Yang

An interconnection network is usually modeled as a graph, in which vertices and edges correspond to processors and communication links, respectively. Connectivity is an important metric for fault tolerance of interconnection networks. A graph [Formula: see text] is said to be maximally local-connected if each pair of vertices [Formula: see text] and [Formula: see text] are connected by [Formula: see text] vertex-disjoint paths. In this paper, we show that Cayley graphs generated by [Formula: see text]([Formula: see text]) transpositions are [Formula: see text]-fault-tolerant maximally local-connected and are also [Formula: see text]-fault-tolerant one-to-many maximally local-connected if their corresponding transposition generating graphs have a triangle, [Formula: see text]-fault-tolerant one-to-many maximally local-connected if their corresponding transposition generating graphs have no triangles. Furthermore, under the restricted condition that each vertex has at least two fault-free adjacent vertices, Cayley graphs generated by [Formula: see text]([Formula: see text]) transpositions are [Formula: see text]-fault-tolerant maximally local-connected if their corresponding transposition generating graphs have no triangles.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750005 ◽  
Author(s):  
GAURAV KHANNA ◽  
RAJESH MISHRA ◽  
S. K. CHATURVEDI

Advancement in technology has resulted in increased computing power with the use of multiple processors within a system. These multiple processors need to communicate with each other and with memory modules. Multistage Interconnection Networks (MINs) provide a communication medium in such multi-processor systems by interconnecting a number of processors and memory modules. Besides, MINs also provide a cost effective substitute to costly crossbars in parallel computers and switching systems in telephone industry. This paper introduces two new fault-tolerant MINs named as Shuffle Exchange Gamma Interconnection Networks (SEGIN-1 and SEGIN-2). SEGIN-1 and SEGIN-2 can be obtained by altering Shuffle Exchange Network with one extra stage (SEN+) and provide two disjoint paths similar to it. Performance of SEGIN-1 and SEGIN-2 has been evaluated in terms of alternative paths, disjoint paths, reliability and hardware cost, and is compared with some very famous MINs like Shuffle Exchange Network (SEN), Shuffle Exchange Network with one extra stage (SEN+), Shuffle Exchange Network with two extra stage (SEN+2), Extra Stage Cube (ESC) and Gamma Interconnection Network (GIN). Results suggest that SEGINs surpass all the compared networks; hence, the proposed designs seem to be suitable for implementing practical interconnection networks.


Author(s):  
Yihong Wang ◽  
Cheng-Kuan Lin ◽  
Shuming Zhou ◽  
Tao Tian

Large scale multiprocessor systems or multicomputer systems, taking interconnection networks as underlying topologies, have been widely used in the big data era. Fault tolerance is becoming an essential attribute in multiprocessor systems as the number of processors is getting larger. A connected graph [Formula: see text] is called strong Menger (edge) connected if, for any two distinct vertices [Formula: see text] and [Formula: see text], there are [Formula: see text] vertex (edge)-disjoint paths between them. Exchanged hypercube [Formula: see text], as a variant of hypercube [Formula: see text], remains lots of preferable fault tolerant properties of hypercube. In this paper, we show that [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text] are strong Menger (edge) connected, respectively. Moreover, as a by-product, for dual cube [Formula: see text], one popular generalization of hypercube, [Formula: see text] is also showed to be strong Menger (edge) connected, where [Formula: see text].


1998 ◽  
Vol 09 (01) ◽  
pp. 25-37 ◽  
Author(s):  
THOMAS J. CORTINA ◽  
ZHIWEI XU

We present a family of interconnection networks named the Cube-Of-Rings (COR) networks along with their basic graph-theoretic properties. Aspects of group graph theory are used to show the COR networks are symmetric and optimally fault tolerant. We present a closed-form expression of the diameter and optimal one-to-one routing algorithm for any member of the COR family. We also discuss the suitability of the COR networks as the interconnection network of scalable parallel computers.


2005 ◽  
Vol 06 (04) ◽  
pp. 361-382 ◽  
Author(s):  
K. V. Arya ◽  
R. K. Ghosh

This paper proposes a technique to modify a Multistage Interconnection Network (MIN) to augment it with fault tolerant capabilities. The augmented MIN is referred to as Enhanced MIN (E-MIN). The technique employed for construction of E-MIN is compared with the two known physical fault tolerance techniques, namely, extra staging and chaining. EMINs are found to be more generic than extra staged networks and less expensive than chained networks. The EMIN realizes all the permutations realizable by the original MIN. The routing strategies under faulty and fault free conditions are shown to be very simple in the case of E-MINs.


2000 ◽  
Vol 01 (02) ◽  
pp. 73-94
Author(s):  
A. FERREIRA ◽  
A. GOLDMAN ◽  
S. W. SONG

In most distributed memory MIMD multiprocessors, processors are connected by a point-to-point interconnection network, usually modeled by a graph where processors are nodes and communication links are edges. Since interprocessor communication frequently constitutes serious bottlenecks, several architectures were proposed that enhance point-to-point topologies with the help of multiple bus systems so as to improve the communication efficiency. In this paper we study parallel architectures where the communication means are constituted solely by buses. These architectures can use the power of bus technologies, providing a way to interconnect much more processors in a simple and efficient manner. We present the hyperpath, hypergrid, hyperring, and hypertorus architectures, which are the bus-based versions of the well used point-to-point interconnection networks. Using (hyper) graph theoretic concepts to model inter-processor communication in such networks, we give optimal algorithms for broadcasting a message from one processor to all the others. For deriving high performance communication patterns we developed a new tool called simplification. The idea is to construct a graph, to be called representative graph, from the original hyper-topology, in such a way that it will become easy to describe and perform communication schemes to the former that will fit to the latter, because the simplification concept also allows us to partially use some already known communication algorithms for usual networks.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Mostafa Abd-El-Barr ◽  
Turki F. Al-Somani

Hierarchical interconnection networks (HINs) provide a framework for designing networks with reduced link cost by taking advantage of the locality of communication that exists in parallel applications. HINs employ multiple levels. Lower-level networks provide local communication while higher-level networks facilitate remote communication. HINs provide fault tolerance in the presence of some faulty nodes and/or links. Existing HINs can be broadly classified into two classes. those that use nodes and/or links replication and those that use standby interface nodes. The first class includes Hierarchical Cubic Networks, Hierarchical Completely Connected Networks, and Triple-based Hierarchical Interconnection Networks. The second HINs class includes Modular Fault-Tolerant Hypercube Networks and Hierarchical Fault-Tolerant Interconnection Network. This paper presents a review and comparison of the topological properties of both classes of HINs. The topological properties considered are network degree, diameter, cost and packing density. The outcome of this study show among all HINs two networks that is, the Root-Folded Heawood (RFH) and the Flooded Heawood (FloH), belonging to the first HIN class provide the best network cost, defined as the product of network diameter and degree. The study also shows that HFCube(n,n)provide the best packing density, that is, the smallest chip area required for VLSI implementation.


Author(s):  
Abderezak Touzene ◽  
Khaled Day

We obtain the conditional fault-diameter of the square torus interconnection network under the condition of forbidden faulty sets (i.e. assuming that each non-faulty processor has at least one non-faulty neighbor). We show that under this condition, the square torus, whose connectivity is 4, can tolerate up to 5 faulty nodes without becoming disconnected. The conditional node connectivity is, therefore, 6. We also show that the conditional fault-diameter of the square torus is equal to the fault-free diameter plus two. With this result the torus joins a group of interconnection networks (including the hypercube and the star-graph) whose conditional fault-diameter has been shown to be only two units over the fault-free diameter. Two fault-tolerant routing algorithms are discussed based on the proposed vertex disjoint paths construction.  


2018 ◽  
Vol 18 (01) ◽  
pp. 1850005 ◽  
Author(s):  
SHIYING WANG ◽  
LINGQI ZHAO

Many multiprocessor systems have interconnection networks as underlying topologies and an interconnection network is usually represented by a graph where nodes represent processors and links represent communication links between processors. No faulty set can contain all the neighbors of any fault-free node in the system, which is called the nature diagnosability of the system. Diagnosability of a multiprocessor system is one important study topic. As a favorable topology structure of interconnection networks, the n-dimensional alternating group graph AGn has many good properties. In this paper, we prove the following. (1) The nature diagnosability of AGn is 4n − 10 for n − 5 under the PMC model and MM* model. (2) The nature diagnosability of the 4-dimensional alternating group graph AG4 under the PMC model is 5. (3) The nature diagnosability of AG4 under the MM* model is 4.


2013 ◽  
Vol 321-324 ◽  
pp. 2715-2720
Author(s):  
Xin Yu ◽  
Gao Cai Wang ◽  
Yan Yu

Crossed cube is a variation of hypercube, but some properties of the former are superior to those of the latter. However, it is difficult to extend the scale of crossed cube networks. As a kind of hierarchical ring interconnection networks, crossed cube-connected ring interconnection network CRN can effectively overcome the disadvantage. Hence, it is a good topology for interconnection networks. In this paper, we prove that there exist n internally vertex-disjoint paths between any two vertexes in CRN, and analyze the lengths of the paths.


Sign in / Sign up

Export Citation Format

Share Document