Contractible Edges in 3-Connected Cubic Graphs

2021 ◽  
pp. 2150014
Author(s):  
Shuai Kou ◽  
Chengfu Qin ◽  
Weihua Yang

An edge [Formula: see text] in a 3-connected graph [Formula: see text] is contractible if the contraction [Formula: see text] is still [Formula: see text]-connected. Let [Formula: see text] be the set of contractible edges of [Formula: see text], [Formula: see text] be the set of vertices adjacent to three vertices of a triangle △. It has been proved that [Formula: see text] in a 3-connected graph [Formula: see text] of order at least 5. In this note [Formula: see text] is a 3-connected cubic graph containing [Formula: see text] triangles, at least [Formula: see text] vertices and with every [Formula: see text] an independent set. Then [Formula: see text]. This is a bound better than [Formula: see text] under some conditions.

2014 ◽  
Vol Vol. 16 no. 3 ◽  
Author(s):  
Frederic Havet ◽  
Nagarajan Paramaguru ◽  
Rathinaswamy Sampathkumar

International audience For a connected graph G of order |V(G)| ≥3 and a k-labelling c : E(G) →{1,2,…,k} of the edges of G, the code of a vertex v of G is the ordered k-tuple (ℓ1,ℓ2,…,ℓk), where ℓi is the number of edges incident with v that are labelled i. The k-labelling c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-labelling is the detection number det(G) of G. In this paper, we show that it is NP-complete to decide if the detection number of a cubic graph is 2. We also show that the detection number of every bipartite graph of minimum degree at least 3 is at most 2. Finally, we give some sufficient condition for a cubic graph to have detection number 3.


1987 ◽  
Vol 30 (2) ◽  
pp. 193-199 ◽  
Author(s):  
J. A. Bondy ◽  
Glenn Hopkins ◽  
William Staton

AbstractIf G is a connected cubic graph with ρ vertices, ρ > 4, then G has a vertex-induced forest containing at least (5ρ - 2)/8 vertices. In case G is triangle-free, the lower bound is improved to (2ρ — l)/3. Examples are given to show that no such lower bound is possible for vertex-induced trees.


2010 ◽  
Vol 21 (03) ◽  
pp. 311-319 ◽  
Author(s):  
AYSUN AYTAC ◽  
ZEYNEP NIHAN ODABAS

The rupture degree of an incomplete connected graph G is defined by [Formula: see text] where w(G - S) is the number of components of G - S and m(G - S) is the order of a largest component of G - S. For the complete graph Kn, rupture degree is defined as 1 - n. This parameter can be used to measure the vulnerability of a graph. Rupture degree can reflect the vulnerability of graphs better than or independent of the other parameters. To some extent, it represents a trade-off between the amount of work done to damage the network and how badly the network is damaged. Computing the rupture degree of a graph is NP-complete. In this paper, we give formulas for the rupture degree of composition of some special graphs and we consider the relationships between the rupture degree and other vulnerability parameters.


2010 ◽  
Vol 62 (2) ◽  
pp. 355-381 ◽  
Author(s):  
Daniel Král’ ◽  
Edita Máčajov´ ◽  
Attila Pór ◽  
Jean-Sébastien Sereni

AbstractIt is known that a Steiner triple system is projective if and only if it does not contain the four-triple configuration C14. We find three configurations such that a Steiner triple system is affine if and only if it does not contain one of these configurations. Similarly, we characterise Hall triple systems using two forbidden configurations.Our characterisations have several interesting corollaries in the area of edge-colourings of graphs. A cubic graph G is S-edge-colourable for a Steiner triple system S if its edges can be coloured with points of S in such a way that the points assigned to three edges sharing a vertex form a triple in S. Among others, we show that all cubic graphs are S-edge-colourable for every non-projective nonaffine point-transitive Steiner triple system S.


Author(s):  
Gary Chartrand ◽  
Sergio Ruiz ◽  
Curtiss E. Wall

AbstractA near 1-factor of a graph of order 2n ≧ 4 is a subgraph isomorphic to (n − 2) K2 ∪ P3 ∪ K1. Wallis determined, for each r ≥ 3, the order of a smallest r-regular graph of even order without a 1-factor; while for each r ≧ 3, Chartrand, Goldsmith and Schuster determined the order of a smallest r-regular, (r − 2)-edge-connected graph of even order without a 1-factor. These results are extended to graphs without near 1-factors. It is known that every connected, cubic graph with less than six bridges has a near 1-factor. The order of a smallest connected, cubic graph with exactly six bridges and no near 1-factor is determined.


1987 ◽  
Vol 36 (3) ◽  
pp. 441-447
Author(s):  
Gary Chartrand ◽  
S.F. Kapoor ◽  
Ortrud R. Oellermann ◽  
Sergio Ruiz

It is proved that if G is a connected cubic graph of order p all of whose bridges lie on r edge-disjoint paths of G, then every maximum matching of G contains at least P/2 − └2r/3┘ edges. Moreover, this result is shown to be best possible.


2018 ◽  
Vol 10 (05) ◽  
pp. 1850069
Author(s):  
Nader Jafari Rad ◽  
Elahe Sharifi

The independence number of a graph [Formula: see text], denoted by [Formula: see text], is the maximum cardinality of an independent set of vertices in [Formula: see text]. [Henning and Löwenstein An improved lower bound on the independence number of a graph, Discrete Applied Mathematics  179 (2014) 120–128.] proved that if a connected graph [Formula: see text] of order [Formula: see text] and size [Formula: see text] does not belong to a specific family of graphs, then [Formula: see text]. In this paper, we strengthen the above bound for connected graphs with maximum degree at least three that have a non-cut-vertex of maximum degree. We show that if a connected graph [Formula: see text] of order [Formula: see text] and size [Formula: see text] has a non-cut-vertex of maximum degree then [Formula: see text], where [Formula: see text] is the maximum degree of the vertices of [Formula: see text]. We also characterize all connected graphs [Formula: see text] of order [Formula: see text] and size [Formula: see text] that have a non-cut-vertex of maximum degree and [Formula: see text].


1970 ◽  
Vol 11 (2) ◽  
pp. 207-215 ◽  
Author(s):  
A. T. Balaban ◽  
Roy O. Davies ◽  
Frank Harary ◽  
Anthony Hill ◽  
Roy Westwick

AbstractThe smallest (nontrivial) identity graph is known to have six points and the smallest identity tree seven. It is now shown that the smallest cubic identity graphs have 12 points and that exactly two of them are planar, namely those constructed by Frucht in his proof that every finite group is isomorphic to the automorphism group of some cubic graph. Both of these graphs can be obtained from plane trees by joining consecutive endpoints; it is shown that when applied to identity trees this construction leads to identity graphs except in certain specified cases. In appendices all connected cubic graphs with 10 points or fewer, and all cubic nonseparable planar graphs with 12 points, are displayed.


Author(s):  
Piotr Formanowicz ◽  
Krzysztof Tanaś

Abstract It was conjectured by Fan and Raspaud (1994) that every bridgeless cubic graph contains three perfect matchings such that every edge belongs to at most two of them. We show a randomized algorithmic way of finding Fan–Raspaud colorings of a given cubic graph and, analyzing the computer results, we try to find and describe the Fan–Raspaud colorings for some selected classes of cubic graphs. The presented algorithms can then be applied to the pair assignment problem in cubic computer networks. Another possible application of the algorithms is that of being a tool for mathematicians working in the field of cubic graph theory, for discovering edge colorings with certain mathematical properties and formulating new conjectures related to the Fan–Raspaud conjecture.


2020 ◽  
Author(s):  
Wouter Cames van Batenburg ◽  
Gwenaël Joret ◽  
Jan Goedgebeur

The _independence ratio_ of a graph is the ratio of the size of its largest independent set to its number of vertices. Trivially, the independence ratio of a k-colorable graph is at least $1/k$ as each color class of a k-coloring is an independent set. However, better bounds can often be obtained for well-structured classes of graphs. In particular, Albertson, Bollobás and Tucker conjectured in 1976 that the independence ratio of every triangle-free subcubic planar graph is at least $3/8$. The conjecture was proven by Heckman and Thomas in 2006, and the ratio is best possible as there exists a cubic triangle-free planar graph with 24 vertices and the independence number equal to 9. The present article removes the planarity assumption. However, one needs to introduce an additional assumption since there are known to exist six 2-connected (non-planar) triangle-free subcubic graphs with the independence ratio less than $3/8$. Bajnok and Brinkmann conjectured that every 2-connected triangle-free subcubic graph has the independence ratio at least $3/8$ unless it is one of the six exceptional graphs. Fraughnaugh and Locke proposed a stronger conjecture: every triangle-free subcubic graph that does not contain one of the six exceptional graphs as a subgraph has independence ratio at least $3/8$. The authors prove these two conjectures, which implies in particular the result by Heckman and Thomas.


Sign in / Sign up

Export Citation Format

Share Document