Differential Localization of Pain-Related Neural Responses During Acupuncture Stimulation Using Blood Oxygen Level Dependent (BOLD) fMRI in a Canine Model

2012 ◽  
Vol 40 (05) ◽  
pp. 919-936 ◽  
Author(s):  
Suk-Ki Chang ◽  
Geon-Ho Jahng ◽  
Sung-Ho Lee ◽  
Il-Whan Choi ◽  
Chi-Bong Choi ◽  
...  

The objective of this study was to differentiate the neuronal responses, which was related or unrelated, to pain associated with acupuncture stimulation, and to localize the brain regions with response to stimulation that is unrelated to pain by using Blood Oxygen Level Dependent (BOLD) functional MRI (fMRI). BOLD fMRI was performed in six normal healthy beagle dogs, during placebo and verum acupuncture stimulations, at the right side of BL60 (KunLun) acupoint before and after local anesthesia of the acupoint. The order of the four sessions was placebo; verum acupuncture stimulation; before local anesthesia; and followed by the same stimulation after local anesthesia. One-sample t-test analysis was performed to localize the activated or deactivated areas, during both pre-anesthesia and post-anesthesia. In order to compare the pre-anesthesia to post-anesthetic responses, and placebo to verum acupuncture stimulation, within-subject analysis was performed. The post-anesthetic verum acupuncture stimulation resulted in increased activations in the left somatic afferent area I and II, right visual and auditory association area, and the descending reticular activating system of the brainstem. In addition, differential areas during post-anesthesia compared to that of the pre-anesthesia were in the left olfactory peduncle and descending reticular activating system of the brainstem. These results indicate that the areas of specific neural pathway are considered to be unrelated to the pain response during acupuncture stimulation.

2013 ◽  
Vol 3 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Julien Poublanc ◽  
Jay Show Han ◽  
Daniel Michael Mandell ◽  
John Conklin ◽  
Jeffrey Alan Stainsby ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 199
Author(s):  
Aline R. Steiner ◽  
Frédérik Rousseau-Blass ◽  
Aileen Schroeter ◽  
Sonja Hartnack ◽  
Regula Bettschart-Wolfensberger

In rodent models the use of functional magnetic resonance imaging (fMRI) under anesthesia is common. The anesthetic protocol might influence fMRI readouts either directly or via changes in physiological parameters. As long as those factors cannot be objectively quantified, the scientific validity of fMRI in rodents is impaired. In the present systematic review, literature analyzing in rats and mice the influence of anesthesia regimes and concurrent physiological functions on blood oxygen level dependent (BOLD) fMRI results was investigated. Studies from four databases that were searched were selected following pre-defined criteria. Two separate articles publish the results; the herewith presented article includes the analyses of 83 studies. Most studies found differences in BOLD fMRI readouts with different anesthesia drugs and dose rates, time points of imaging or when awake status was compared to anesthetized animals. To obtain scientifically valid, reproducible results from rodent fMRI studies, stable levels of anesthesia with agents suitable for the model under investigation as well as known and objectively quantifiable effects on readouts are, thus, mandatory. Further studies should establish dose ranges for standardized anesthetic protocols and determine time windows for imaging during which influence of anesthesia on readout is objectively quantifiable.


2016 ◽  
Vol 77 (2) ◽  
pp. 806-813 ◽  
Author(s):  
Jorn Fierstra ◽  
Jan-Karl Burkhardt ◽  
Christiaan Hendrik Bas van Niftrik ◽  
Marco Piccirelli ◽  
Athina Pangalu ◽  
...  

Radiology ◽  
2014 ◽  
Vol 272 (2) ◽  
pp. 397-406 ◽  
Author(s):  
Hsin-Jung Yang ◽  
Roya Yumul ◽  
Richard Tang ◽  
Ivan Cokic ◽  
Michael Klein ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taishi Hosaka ◽  
Marino Kimura ◽  
Yuko Yotsumoto

AbstractWe have a keen sensitivity when it comes to the perception of our own voices. We can detect not only the differences between ourselves and others, but also slight modifications of our own voices. Here, we examined the neural correlates underlying such sensitive perception of one’s own voice. In the experiments, we modified the subjects’ own voices by using five types of filters. The subjects rated the similarity of the presented voices to their own. We compared BOLD (Blood Oxygen Level Dependent) signals between the voices that subjects rated as least similar to their own voice and those they rated as most similar. The contrast revealed that the bilateral superior temporal gyrus exhibited greater activities while listening to the voice least similar to their own voice and lesser activation while listening to the voice most similar to their own. Our results suggest that the superior temporal gyrus is involved in neural sharpening for the own-voice. The lesser degree of activations observed by the voices that were similar to the own-voice indicates that these areas not only respond to the differences between self and others, but also respond to the finer details of own-voices.


Sign in / Sign up

Export Citation Format

Share Document