scholarly journals EXTENDING THE STANDARD MODEL: AN UPPER BOUND FOR A NEUTRINO MASS FROM THE RARE DECAY $K^+\rightarrow\pi^+\nu\bar\nu$

2000 ◽  
Vol 15 (08) ◽  
pp. 579-586 ◽  
Author(s):  
B. MACHET

The standard model seeming at a loss to account for the present experimental average rate for the rare decay [Formula: see text], we tackle the question with the extension of the Glashow–Salam–Weinberg model to an SU (2)L× U (1) gauge theory of J = 0 mesons proposed in Ref. 7, in which, in addition, the neutrinos are given Dirac masses from Yukawa couplings to the Higgs boson. The latter triggers a new contribution to this decay through flavor changing neutral currents that arise in the quartic term of the symmetry breaking potential; it becomes sizable for a neutrino mass in the MeV range; the experimental upper limit for the decay rate translates into an upper bound of 5.5 MeV for the mass of the neutrino, three times lower than the present direct bounds.

2009 ◽  
Vol 24 (32) ◽  
pp. 6223-6235 ◽  
Author(s):  
S. SAHOO ◽  
C. K. DAS ◽  
L. MAHARANA

We study the effect of both Z and Z′ mediated flavor-changing neutral currents (FCNCs) on the Λb→Λℓ+ℓ-(ℓ = μ, τ) rare decay. We find the branching ratio is reasonably enhanced from its Standard Model value due to the effect of both Z and Z′ mediated FCNCs, and gives the possibility of new physics beyond the Standard Model. The contribution of Z′ boson depends upon the precise value of MZ′.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Teruyuki Kitabayashi

Abstract We study the capability of generating the correct flavor neutrino mass matrix in a scalar clockwork model. First, we assume that the flavor structure is controlled by the Yukawa couplings as in the standard model. In this case, the correct flavor neutrino mass matrix could be obtained by appropriate Yukawa couplings $Y_{\ell^\prime\ell}$ where $\ell^\prime, \ell = e, \mu, \tau$. Next, we assume that the Yukawa couplings are extremely democratic: $|Y_{\ell^\prime\ell} |=1$. In this case, the model parameters of the scalar clockwork sector, such as the site number of a clockwork gear in a clockwork chain, should have the flavor indices $\ell^\prime$ and/or $\ell$ to generate the correct flavor neutrino mass matrix. We show some examples of assignments of the flavor indices which can yield the correct flavor neutrino mass matrix.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
E. Cortina Gil ◽  
◽  
A. Kleimenova ◽  
E. Minucci ◽  
S. Padolski ◽  
...  

Abstract The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 109 tagged π0 mesons from K+ → π+π0(γ), searching for the decay of the π0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4.4 × 10−9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit on the branching ratio for the decay K+ → π+X, where X is a particle escaping detection with mass in the range 0.110–0.155 GeV/c2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming X to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
T. Bergauer ◽  
...  

Abstract A search is presented for a Higgs boson that is produced via vector boson fusion and that decays to an undetected particle and an isolated photon. The search is performed by the CMS collaboration at the LHC, using a data set corresponding to an integrated luminosity of 130 fb−1, recorded at a center-of-mass energy of 13 TeV in 2016–2018. No significant excess of events above the expectation from the standard model background is found. The results are interpreted in the context of a theoretical model in which the undetected particle is a massless dark photon. An upper limit is set on the product of the cross section for production via vector boson fusion and the branching fraction for such a Higgs boson decay, as a function of the Higgs boson mass. For a Higgs boson mass of 125 GeV, assuming the standard model production rates, the observed (expected) 95% confidence level upper limit on the branching fraction is 3.5 (2.8)%. This is the first search for such decays in the vector boson fusion channel. Combination with a previous search for Higgs bosons produced in association with a Z boson results in an observed (expected) upper limit on the branching fraction of 2.9 (2.1)% at 95% confidence level.


2005 ◽  
Vol 20 (36) ◽  
pp. 2767-2774 ◽  
Author(s):  
ERNEST MA

If a family symmetry exists for the quarks and leptons, the Higgs sector is expected to be enlarged to be able to support the transformation properties of this symmetry. There are, however, three possible generic ways (at tree level) of hiding this symmetry in the context of the Standard Model with just one Higgs doublet. All three mechanisms have their natural realizations in the unification symmetry E6 and one in SO (10). An interesting example based on SO (10)×A4 for the neutrino mass matrix is discussed.


2014 ◽  
Vol 35 ◽  
pp. 1460390
Author(s):  
SIMEONE DUSSONI

The MEG experiment started taking data in 2009 looking for the Standard Model suppressed decay μ → e + γ, which, if observed, can reveal Beyond Standard Model physics. It makes use of state-of-the art detectors optimized for operating in conditions of very high intensity, rejecting as much background as possible. The data taking ended August 2013 and an upgrade R&D is started to push the experimental sensitivity. The present upper limit on the decay Branching Ratio (BR) is presented, obtained with the subset of data from 2009 to 2011 run, together with a description of the key features of the upgraded detector.


2019 ◽  
Vol 34 (35) ◽  
pp. 1950288
Author(s):  
Tian-Qi Li ◽  
Chong-Xing Yue

Flavons are the dynamic agent of flavor symmetry breaking and have flavor changing couplings to the Standard Model (SM) fermions. We consider their contributions to the lepton flavor violating (LFV) decays [Formula: see text] and [Formula: see text] with [Formula: see text], [Formula: see text] or [Formula: see text] and [Formula: see text] in the simplest flavon model without Higgs-flavon mixing. We find that flavons can produce significant contributions to some of these LFV decay processes.


2003 ◽  
Vol 18 (14) ◽  
pp. 977-982 ◽  
Author(s):  
JI-HAO JIANG ◽  
DAO-NENG GAO ◽  
MU-LIN YAN

The decay [Formula: see text] is investigated beyond the standard model. Interestingly, the upper limit of the CP-conserving and CP-violating branching ratios of the decay, induced from the possible extensions of the standard model, would be larger than the corresponding branching ratios given in the standard model respectively, and it is expected that the CP-violating part could be enhanced.


2013 ◽  
Vol 28 (05) ◽  
pp. 1350010 ◽  
Author(s):  
F. R. KLINKHAMER

It is pointed out (not for the first time) that the minimal Standard Model, without additional gauge-singlet right-handed neutrinos or isotriplet Higgs fields, allows for nonvanishing neutrino masses and mixing. The required interaction term is non-renormalizable and violates B-L conservation. The ultimate explanation of this interaction term may or may not rely on grand unification.


Sign in / Sign up

Export Citation Format

Share Document