flavor structure
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 18)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Arghyajit Datta ◽  
Biswajit Karmakar ◽  
Arunansu Sil

Abstract We propose a minimal A4 flavor symmetric model, assisted by Z2× Z3 symmetry, which can naturally takes care of the appropriate lepton mixing and neutrino masses via Type-I seesaw. It turns out that the framework, originated due to a specific flavor structure, favors the normal hierarchy of light neutrinos and simultaneously narrows down the range of Dirac CP violating phase. It predicts an interesting correlation between the atmospheric mixing angle and the Dirac CP phase too. While the flavor structure indicates an exact degeneracy of the right-handed neutrino masses, renormalization group running of the same from a high scale is shown to make it quasi-degenerate and a successful flavor leptogenesis takes place within the allowed parameter space obtained from neutrino phenomenology.


2021 ◽  
Vol 36 (27) ◽  
pp. 2150196
Author(s):  
Ying Zhang

To address fermion mass hierarchy and flavor mixings in the quark and lepton sectors, a minimal flavor structure without any redundant parameters beyond phenomenological observables is proposed via decomposition of the Standard Model Yukawa mass matrix into a bi-unitary form. After reviewing the roles and parameterization of the factorized matrix [Formula: see text] and [Formula: see text] in fermion masses and mixings, we generalize the mechanism to up- and down-type fermions to unify them into a universal quark/lepton Yukawa interaction. In the same way, a unified form of the description of the quark and lepton Yukawa interactions is also proposed, which shows a similar picture as the unification of gauge interactions.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Alexander Baur ◽  
Moritz Kade ◽  
Hans Peter Nilles ◽  
Saúl Ramos-Sánchez ◽  
Patrick K. S. Vaudrevange

Abstract We present a detailed analysis of the eclectic flavor structure of the two-dimensional ℤ2 orbifold with its two unconstrained moduli T and U as well as SL(2, ℤ)T× SL(2, ℤ)U modular symmetry. This provides a thorough understanding of mirror symmetry as well as the R-symmetries that appear as a consequence of the automorphy factors of modular transformations. It leads to a complete picture of local flavor unification in the (T, U) modulus landscape. In view of applications towards the flavor structure of particle physics models, we are led to top-down constructions with high predictive power. The first reason is the very limited availability of flavor representations of twisted matter fields as well as their (fixed) modular weights. This is followed by severe restrictions from traditional and (finite) modular flavor symmetries, mirror symmetry, $$ \mathcal{CP} $$ CP and R-symmetries on the superpotential and Kähler potential of the theory.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Sebastian Bruggisser ◽  
Ruth Schäfer ◽  
Danny van Dyk ◽  
Susanne Westhoff

Abstract New physics not far above the TeV scale should leave a pattern of virtual effects in observables at lower energies. What do these effects tell us about the flavor structure of a UV theory? Within the framework of the Standard Model Effective Field Theory (SMEFT), we resolve the flavor structure of the Wilson coefficients in a combined analysis of top-quark and B-physics observables. We assume that the Yukawa couplings are the only sources of flavor symmetry breaking, a framework known as Minimal Flavor Violation. Our fits to LHC and b-factory measurements show that combining top and bottom observables is crucial to pin down possible sources of flavor breaking in a UV theory. This analysis includes the full analytic expansion of SMEFT coefficients in Minimal Flavor Violation and a detailed study of SMEFT effects in b → s flavor transitions.


2021 ◽  
Vol 103 (7) ◽  
Author(s):  
Martin Bauer ◽  
Patrick Foldenauer ◽  
Martin Mosny
Keyword(s):  

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Keiya Ishiguro ◽  
Tatsuo Kobayashi ◽  
Hajime Otsuka

Abstract We study the moduli stabilization from the viewpoint of modular flavor symmetries. We systematically analyze stabilized moduli values in possible configurations of flux compactifications, investigating probabilities of moduli values and showing which moduli values are favorable from our moduli stabilization. Then, we examine their implications on modular symmetric flavor models. It is found that distributions of complex structure modulus τ determining the flavor structure are clustered at a fixed point with the residual ℤ3 symmetry in the SL(2, ℤ) fundamental region. Also, they are clustered at other specific points such as intersecting points between |τ|2 = k/2 and Re τ = 0,±1/4,±1/2, although their probabilities are less than the ℤ3 fixed point. In general, CP-breaking vacua in the complex structure modulus are statistically disfavored in the string landscape. Among CP-breaking vacua, the values Re τ = ±1/4 are most favorable in particular when the axio-dilaton S is stabilized at Re S = ±1/4. That shows a strong correlation between CP phases originated from string moduli.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Xiaokang Du ◽  
Fei Wang

Abstract Modular flavor symmetry can be used to explain the quark and lepton flavor structures. The SUSY partners of quarks and leptons, which share the same superpotential with the quarks and leptons, will also be constrained by the modular flavor structure and show a different flavor(mixing) pattern at the GUT scale. So, in realistic modular flavor models with SUSY completion, constraints from the collider and DM constraints can also be used to constrain the possible values of the modulus parameter. In the first part of this work, we discuss the possibility that the S3 modular symmetry can be preserved by the fixed points of T2/ZN orbifold, especially from T2/Z2. To illustrate the additional constraints from collider etc on modular flavor symmetry models, we take the simplest UV SUSY-completion S3 modular invariance SU(5) GUT model as an example with generalized gravity mediation SUSY breaking mechanism. We find that such constraints can indeed be useful to rule out a large portion of the modulus parameters. Our numerical results show that the UV-completed model can account for both the SM (plus neutrino) flavor structure and the collider, DM constraints. Such discussions can also be applied straightforwardly to other modular flavor symmetry models, such as A4 or S4 models.


2020 ◽  
Vol 960 ◽  
pp. 115210
Author(s):  
Y.H. Ahn ◽  
Xiaojun Bi

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Teruyuki Kitabayashi

Abstract We study the capability of generating the correct flavor neutrino mass matrix in a scalar clockwork model. First, we assume that the flavor structure is controlled by the Yukawa couplings as in the standard model. In this case, the correct flavor neutrino mass matrix could be obtained by appropriate Yukawa couplings $Y_{\ell^\prime\ell}$ where $\ell^\prime, \ell = e, \mu, \tau$. Next, we assume that the Yukawa couplings are extremely democratic: $|Y_{\ell^\prime\ell} |=1$. In this case, the model parameters of the scalar clockwork sector, such as the site number of a clockwork gear in a clockwork chain, should have the flavor indices $\ell^\prime$ and/or $\ell$ to generate the correct flavor neutrino mass matrix. We show some examples of assignments of the flavor indices which can yield the correct flavor neutrino mass matrix.


Sign in / Sign up

Export Citation Format

Share Document