scholarly journals On diagrammatic technique for nonlinear dynamical systems

2014 ◽  
Vol 29 (35) ◽  
pp. 1430039
Author(s):  
Mykola Semenyakin

In this paper, we investigate phase flows over ℂn and ℝn generated by vector fields V = ∑ Pi∂i where Pi are finite degree polynomials. With the convenient diagrammatic technique, we get expressions for evolution operators ev {V|t} : x(0) ↦ x(t) through the series in powers of x(0) and t, represented as sum over all trees of a particular type. Estimates are made for the radius of convergence in some particular cases. The phase flows behavior in the neighborhood of vector field fixed points are examined. Resonance cases are considered separately.

2014 ◽  
Vol 66 (2) ◽  
Author(s):  
Amol Marathe ◽  
Rama Govindarajan

This introduction to nonlinear systems is written for students of fluid mechanics, so connections are made throughout the text to familiar fluid flow systems. The aim is to present how nonlinear systems are qualitatively different from linear and to outline some simple procedures by which an understanding of nonlinear systems may be attempted. Considerable attention is paid to linear systems in the vicinity of fixed points, and it is discussed why this is relevant for nonlinear systems. A detailed explanation of chaos is not given, but a flavor of chaotic systems is presented. The focus is on physical understanding and not on mathematical rigor.


2008 ◽  
Vol 18 (11) ◽  
pp. 3461-3471 ◽  
Author(s):  
A. P. MIJOLARO ◽  
L. F. C. ABERTO ◽  
N. G. BRETAS

The asymptotic behavior of a class of coupled second-order nonlinear dynamical systems is studied in this paper. Using very mild assumptions on the vector-field, conditions on the coupling parameters that guarantee synchronization are provided. The proposed result does not require solutions to be ultimately bounded in order to prove synchronization, therefore it can be used to study coupled systems that do not globally synchronize, including synchronization of unbounded solutions. In this case, estimates of the synchronization region are obtained. Synchronization of two-coupled nonlinear pendulums and two-coupled Duffing systems are studied to illustrate the application of the proposed theory.


Sign in / Sign up

Export Citation Format

Share Document